This comprehensive review explores the forefront of nanohybrid materials, focusing on the integration of coordination materials in various applications, with a spotlight on their role in the development of flexible solar cells. Coordination material-based nanohybrids, characterized by their unique properties and multifunctionality, have garnered significant attention in fields ranging from catalysis and sensing to drug delivery and energy storage. The discussion investigates the synthesis methods, properties, and potential applications of these nanohybrids, underscoring their versatility in materials science. Additionally, the review investigates the integration of coordination nanohybrids in perovskite solar cells (PSCs), showcasing their ability to enhance the performance and stability of next-generation photovoltaic devices. The narrative further expands to encompass the synthesis of luminescent nanohybrids for bioimaging purposes and the development of layered, two-dimensional (2D) material-based nanostructured hybrids for energy storage and conversion. The exploration culminates in an examination of the synthesis of conductive polymer nanostructures, elucidating their potential in drug delivery systems. Last but not least, the article discusses the cutting-edge realm of flexible solar cells, emphasizing their adaptability and lightweight design. Through a systematic examination of these diverse nanohybrid materials, this review sheds light on the current state of the art, challenges, and prospects, providing valuable insights for researchers and practitioners in the fields of materials science, nanotechnology, and renewable energy.
Carbon based materials are really an integral component of our lives and widespread research regarding their properties was conducted along this process. The addition of dopants to carbon materials, either during the production process or later on, has been actively investigated by researchers all over the world who are looking into how doping can enhance the performance of materials and how to overcome the current difficulties. This study explores synthesis methods for nitrogen-doped carbon materials, focusing on advancements in adsorption of different pollutants like CO2 from air and organic, inorganic and ions pollutants from water, energy conversion, and storage, offering novel solutions to environmental and energy challenges. It addresses current issues with nitrogen-doped carbon materials, aiming to contribute to sustainable solutions in environmental and energy sciences. Alongside precursor types and synthesis methods, a significant relationship exists between nitrogen content percentage and adsorption capacity in nitrogen-doped activated carbon. Nitrogen content ranges from 0.64% to 11.23%, correlating with adsorption capacities from 0.05 mmol/g to 7.9 mmol/g. Moreover, an electrochemical correlation is observed between nitrogen atom increase and specific capacity in nitrogen-doped activated carbon electrodes. Higher nitrogen percentage corresponds to increased specific capacity and capacity retention. This comprehensive analysis sheds light on the potential of nitrogen-doped carbon materials and highlights their significance in addressing critical environmental and energy challenges.
Transitioning to a green economy is a global concern, considered a pathway to sustainable development. This paper aims to investigate the effect of the transition into a green economy on Vietnam’s sustainable development and its two economic and environmental dimensions, with consideration of several essential issues including renewable energy, technological innovation, natural resource rents (oils, forest, and minerals), foreign direct investment, and trade. This paper utilizes data from 1996 to 2020 and then applies the autoregressive distributed lag (ARDL) method for analysis. The results conclude that renewable energy is a driving key to reducing environmental degradation, but it hampers economic growth, while the contrast occurs with technology. Our results emphasize the dependence on non-renewable energy, whereas the innovation of technology does not show a green orientation in Vietnam. Furthermore, there is a lack of sustainability in the effect of natural resource rents, foreign direct investment, and trade. Overall, the transition into a green economy in Vietnam does not illustrate the sustainable orientation. The findings of this research provide empirical evidence to clarify the relationship between this transition and its driving factor, with sustainable development and the two economic environment dimensions. In addition, this study will bring worthwhile implications for the policymakers and scholars on whether the transition to a green economy fulfills the orientation towards sustainability, then enhancing the economy's efficiency to achieve green growth, following the pathway to sustainable development.
The purpose of the article is to present the results of analysis of newly industrialized countries in the context of sustainable development. The study took place within the framework of the Kaldor’s structural-economic model of the gross domestic product and the energy flow model, using the socio-economic systems power changes analyzing method. Within the context of the approach, an invariant coordinate system in energy units is considered, the necessary conditions for sustainable development are formulated, and the main parameters for assessing the potential for growth and development are determined. The article focuses on key issues regarding new concepts of sustainable development and methodology for assessing sustainable development using the concept of socioeconomics useful power for the countries of the newly industrialized economy a group of emerging countries that have made in short time period a qualitative transition in socio-economic development. Based on a new definition of sustainable development in energy units, development trends are formulated for the selected countries during 20 years for the period 2000–2019. Results of the study can be used to planning for the transition to sustainable development. The data of the Central Statistical Office of European Union, the World Bank and the United Nations Organization were used for calculations. Initial interpretation of the calculated data has been done for the largest newly industrialized countries Brazil, India and China in terms of the gross domestic product in the period 1990–2019. For comparison, data on USA are presented as countries with advanced economy.
Copyright © by EnPress Publisher. All rights reserved.