This study aims to evaluate the influence of population dependency ratio on the economic growth of Bangladesh, India, and Pakistan, the three members of the South Asian Association for Regional Cooperation (SAARC). The study covers the time from 1960 to 2021. It also analyses in detail how population aging and the youth dependency ratio affects the development of certain sectors, including industry, services and agriculture. This study uses panel data to determine the influence of population dependency ratios on economic growth. To estimate this effect, we use the Pooled Mean Group/Autoregressive Distributed Lag (PMG/ARDL) technique. Based on the results obtained from the ARDL analysis indicate the presence of a long-term relationship among these variables. These discoveries align with prior empirical research conducted by Lee and Shin, Mamun et al., and Rostiana and Rodesbi. Furthermore, the findings suggest that an increase in the old age population dependency ratio positively influences economic growth within these nations. The long-term relationship findings pertaining to the old and young dependency ratio and economic growth corroborate the conclusions of Bawazir et al., who proposed that the old population dependency ratio exerts a favorable impact, while the young population has an adverse effect on economic growth. Originality: This research focused on the population dependency ratio, a pivotal demographic metric that gauges the proportion of individuals relying on support (including children and the elderly) compared to those of working age. This investigation particularly explores the interconnection between the population dependency ratio and sectoral development, an essential aspect given that various sectors make distinct contributions to economic advancement. Examining how population dynamics affect sectoral development yields valuable insights into the overall economic performance of Pakistan, India, and Bangladesh.
The initiation of tapering, sparked by heightened inflation in the United States, reverberates across global markets, with notable implications for Indonesia. This study delved into the nuanced impact of tapering on Sharia-compliant stocks in both Indonesia and Malaysia. The rationale behind selecting Sharia stocks for analysis lies in their composition, featuring companies boasting low debt-to-asset and equity ratios, thereby positing robust resilience in the face of the Federal Reserve’s implementation of tapering. Employing a time series dataset with a weekly sampling period spanning from January to September 2022, the analysis adopted the Error Correction Model (ECM) within a multiple regression framework to circumvent potential spurious regression pitfalls. The results of this study indicate that the impact of tapering off policy in Indonesia has a positive impact in the short term and long term, while in Malaysia it tends to be insignificant in the short term and has a positive impact from the US 10-year bond yield variable and a negative impact from US 1-Year Treasury Bills. This result is interesting because it differs from the general theory. The causal factors include the agility of the Indonesian central bank in maintaining the benchmark interest rate spread with the Fed, the economic stability of both countries, and the increasing trend of coal, with Indonesia being one of the largest producers of the commodity. Investors, in navigating these intricate dynamics, may find strategic insights derived from this research invaluable for shaping their investment decisions. while government policymakers may use them as a reference for shaping policies related to Sharia stock investments, including the incorporation of artificial intelligence.
This study investigates the role of property quality in shaping booking intentions within the dynamic landscape of the hospitality sector. A comprehensive approach, integrating qualitative and quantitative methodologies, is employed, utilising Airdna’s dataset spanning from July 2016 to June 2020. Multiple regression models, including interaction terms, are applied to scrutinise the moderating role of property quality. The study unveils unexpected findings, particularly a counterintuitive negative correlation between property quality and booking intentions in Model 7, challenging conventional assumptions. Theoretical implications call for a deeper exploration of contextual nuances and psychological intricacies influencing guest preferences, urging a re-evaluation of established models within hospitality management. On a practical note, the study emphasises the significance of continuous quality improvement and dynamic strategies aligned with evolving consumer expectations. The unexpected correlation prompts a shift towards more context-specific approaches in understanding and managing guest behavior, offering valuable insights for both academia and the ever-evolving landscape of the hospitality industry.
Service composition enables the integration of multiple services to create new functionalities, optimizing resource utilization and supporting diverse applications in critical domains such as safety-critical systems, telecommunications, and business operations. This paper addresses the challenges in comparing load-balancing algorithms within service composition environments and proposes a novel dynamic load-balancing algorithm designed specifically for these systems. The proposed algorithm aims to improve response times, enhance system efficiency, and optimize overall performance. Through a simulated service composition environment, the algorithm was validated, demonstrating its effectiveness in managing the computational load of a BMI calculator web service. This dynamic algorithm provides real-time monitoring of critical system parameters and supports system optimization. In future work, the algorithm will be refined and tested across a broader range of scenarios to further evaluate its scalability and adaptability. By bridging theoretical insights with practical applications, this research contributes to the advancement of dynamic load balancing in service composition, offering practical implications for high-tech system performance.
This research aims to analyze the strategic role of the Islamic organizations Muhammadiyah and Al-Washliyah in the electoral dynamics of North Sumatra. The background for this study stems from the significant influence these organizations hold in the social, educational, and political spheres of the region, leveraging their extensive membership base and organizational structure. The urgency of this research arises from the need to understand how religious organizations shape political outcomes, which is crucial for developing more inclusive governance strategies. Employing a qualitative descriptive methodology, this study explores how these organizations mobilize support during elections and influence policies through their educational and social programs. Findings reveal that Muhammadiyah and Al-Washliyah effectively utilize mass mobilization and social movement theories to maintain their influence in the political landscape of North Sumatra, subtly navigating and shaping local politics through strategic engagement and advocacy.
Copyright © by EnPress Publisher. All rights reserved.