This study analyzes the dynamic relationships between tourism, gross domestic product (GDP) per capita, exports, imports, and carbon dioxide (CO2) emissions in five South Asian countries. A VAR-based Granger causality test is performed with time series data from Bangladesh, India, Nepal, Pakistan, and Sri Lanka. According to the results, both bidirectional and unidirectional relationships among tourism, economic growth, and carbon emissions are investigated. Specifically, tourism significantly impacts GDP per capita in Pakistan, Sri Lanka, and Nepal, yet it has no effect in Bangladesh or India. However, the GDP per capita shows a unidirectional relationship with tourism in Bangladesh and India. The unidirectional causal relationship from exports and imports to tourism in the context of India and a bidirectional relationship in the case of Nepal. In Pakistan, it is observed that exports have a one-way influence on tourism. The result of the panel Granger test shows a significant causal association between tourism, economic growth, and trade (import and export) in five South Asian economies. Particularly, there is a bidirectional causal relationship between GDP per capita and tourism, and a significant unidirectional causal relationship from CO2 emissions, exports, and imports to tourism is explored. The findings of this study are helpful for tourism stakeholders and policymakers in the region to formulate more sustainable and effective tourism strategies.
The present study focuses on improving Cognitive Radio Networks (CRNs) based on applying machine learning to spectrum sensing in remote learning scenarios. Remote education requires connection dependability and continuity that can be affected by the scarcity of the amount of usable spectrum and suboptimal spectrum usage. The solution for the proposed problem utilizes deep learning approaches, namely CNN and LSTM networks, to enhance the spectrum detection probability (92% detection accuracy) and consequently reduce the number of false alarms (5% false alarm rate) to maximize spectrum utilization efficiency. By developing the cooperative spectrum sensing where many users share their data, the system makes detection more reliable and energy-saving (achieving 92% energy efficiency) which is crucial for sustaining stable connections in educational scenarios. This approach addresses critical challenges in remote education by ensuring scalability across diverse network conditions and maintaining performance on resource-constrained devices like tablets and IoT sensors. Combining CRNs with new technologies like IoT and 5G improves their capabilities and allows these networks to meet the constantly changing loads of distant educational systems. This approach presents another prospect to spectrum management dilemmas in that education delivery needs are met optimally from any STI irrespective of the availability of resources in the locale. The results show that together with machine learning, CRNs can be considered a viable path to improving the networks' performance in the context of remote learning and advancing the future of education in the digital environment. This work also focuses on how machine learning has enabled the enhancement of CRNs for education and provides robust solutions that can meet the increasing needs of online learning.
This article examines the female figures in Eileen Chang’s works, exploring their female consciousness in different social environments and historical backgrounds, as well as the influence of Eileen Chang’s legendary experiences on their formation. This article delves into the female consciousness depicted in Eileen Chang’s works, revealing her contributions to modern Chinese literature and social culture. The female consciousness in Eileen Chang’s works reflects her concern for the status of women and serves as a critique of patriarchal society and feudal culture. The female characters portrayed by Eileen Chang exhibit strong individuality and self-awareness, yet they still struggle to break free from the constraints of patriarchal society and feudal culture, losing themselves in the “foreign enclave society”. Eileen Chang’s legendary life greatly impacted the development of her female consciousness.
The research explores academia and industry experts’ viewpoints regarding the innovative progression of Virtual Reality (VR)-based safety tools customized for technical and vocational education training (TVET) within commercial kitchen contexts. Developing a VR-based safety tools holistic framework is crucial in identifying constructs to mitigate the risks prevalent in commercial kitchens, encompassing physical, chemical, biological, ergonomic, and psychosocial hazards workers encounter. Introducing VR-based safety training represents a proactive strategy to bolster education and training standards, especially given the historically limited attention directed toward workers’ physical and mental well-being in this sector. This study pursues a primary objective: validating a framework for VR-based kitchen safety within TVET’s hospitality programs. In addition to on-site observations, the research conducted semi-structured interviews with 16 participants, including safety training coordinators, food service coordinators, and IT experts. Participants supplemented qualitative insights by completing a 7-Likert scale survey. Utilizing the Fuzzy Delphi technique, seven constructs were delineated. The validation process underscored three pivotal constructs essential for the VR safety framework’s development: VR kitchen design, interactive applications, and hazard identification. These findings significantly affect the hospitality industry’s safety standards and training methodologies within commercial kitchen environments.
Smart electric meters play a pivotal role in making energy systems decarbonized and automating the energy system. Smart electric meters denote huge business opportunities for both public and private companies. Utility players can manage the electricity demand more efficiently whereas customers can monitor and control the electricity bill through the adoption of smart electric meters. The study examines the factors affecting the adoption intention of smart electric meters in Indian households. This study draws a roadmap that how utility providers and customers can improve the smart electric meters adoption. The study has five independent variables (performance expectancy, effort expectancy, social influence, environmentalism, and hedonic motivation) and one dependent variable (adoption intention). The sample size for the study is four hundred and sixty-two respondents from Delhi and the National Capital Region (NCR). The data was analysed using structural equation modelling (SEM). The results of this study have confirmed that performance expectancy, environmentalism, and social influence have a significant impact on the intention of adopting smart electric meters. Therefore, utility providers can improve their strategies to attract more customers to adopt smart electric meters by focusing more on the performance of smart electric meters and by making them environmentally friendly. This research offers meaningful insights to both customers and utility providers to make energy systems decarbonized and control energy consumption.
Copyright © by EnPress Publisher. All rights reserved.