The national park with Chinese characteristics is the highest level of protection of a kind of natural protection, its establishment marks the park will implement the strictest ecological protection means. It is of great value to construct the utilization system of national park resources under the new natural protected area system in the new era to avoid the misunderstanding of “ecological protection only” and explore how to carry out the sustainable utilization of resources in the reform of national park system and mechanism. According to the analytic hierarchy process (AHP) and Delphi method, the evaluation framework, indicators, reference standards and weights of resource utilization under the national park system were determined in combination with the requirements of constructing the protected natural area system and the total value of resource ecosystem services (including harvest value, existence value and future value). Based on the application research of Bawangling zone of Hainan Tropical Rainforest National Park, the optimal resource utilization system in the future was proposed, and two optimization strategies of ecological adjustment of resource utilization system and construction of suitable resource utilization system were put forward.
Increasingly, U.S. cities are focusing on transit-oriented development (TOD) policies to expand the stock of higher-density, mixed-use development near public transit stations within the context of a transit corridor and, in most cases, a regional metropolis. A TOD zone relies on a regulatory and institutional environment, public and private participation and investment, and development incentives to create vibrant, people-oriented communities and mobility options and to support business development. TODs provide local governments with more tax revenues due to increased property values (and, as applicable, income and sales tax revenues), but most planning for TODs ignores the non-transit infrastructure costs of increasing development density. This study focused on determining the water and sewer infrastructure costs for TOD zones along a rail line in southeast Florida. The finding was that millions of dollars in funds are needed to meet those water and sewer needs and that few are currently planned as a part of community capital improvement programs.
The electron/hole transport layer can promote charge transfer and improve device performance, which is used in perovskite solar cells. The nanoarray structure transport layers can not only further promote carrier transport but also reduce recombination. It also has a great potential in enhancing perovskite light absorption, improving device stability and inhibiting the crack nucleation of different structure layers in perovskite solar cells. This paper reviewed the research progress of perovskite solar cells with different nanoarray structure transport layers. The challenges and development directions of perovskite solar cells based on nanoarray structure transport layers are also summarized and prospected.
Fire, a phenomenon occurs in most parts of the world and causes severe financial losses, even, irreparable damages. Many parameters are involved in the occurrence of a fire; some of which are constant over time (at least in a fire cycle), but the others are dynamic and vary over time. Unlike the earthquake, the disturbance of fire depends on a set of physical, chemical, and biological relations. Monitoring the changes to predict the occurrence of fire is efficient in forest management. Method: In this research, the Persian and English databases were structurally searched using the keywords of fire risk modeling, fire risk, fire risk prediction, remote sensing and the reviewed papers that predicted the fire risk in the field of remote sensing and geographic information system were retrieved. Then, the modeling and zoning data of fire risk prediction were extracted and analyzed in a descriptive manner. Accordingly, the study was conducted in 1995-2017. Findings: Fuzzy analytic hierarchy process (AHP) zoning method was more practical among the applied methods and the plant moisture stress measurement was the most efficient among the remote sensing indices. Discussion and Conclusion: The findings indicate that RS and GIS are effective tools in the study of fire risk prediction.
This work was carried out with the purpose of generating ecological and silvicultural information oriented to sustainable management. The horizontal structure was evaluated using the importance value index of Curtis and Macintosh, the vertical structure using Finol’s methodology. Through the sociological position index, the percentage natural regeneration and the extended importance value index were estimated in order to infer the permanence of the forest ecosystem. The floristic composition was represented by species of the families Anacardiaceae, Apocynaceae, Fabaceae, Santalaceae, Rhamnaceae, Sapotaceae, Simarubaceae, Ulmaceae, Zygophyllaceae, Capparidaceae, Borraginaceae and Achatocarpaceae. In the horizontal structure, the species with the highest rank was Acacia praecox, followed in order of importance by Schinopsis balansae, Aspidosperma quebracho blanco and Prosopis kuntzei. According to sociological position, Acacia praecox was the most representative species, followed by Patagonula americana, Schinus longifolius, Proposis kuntzei and Aspidosperma quebracho blanco. The species with the best regeneration values were Achatocarpus nigricans and Acacia praecox in the shrub layer and Patagonula americana in the tree layer. The extended importance index consolidated the category of Acacia praecox in the community and gave a better category to Schinopsis balansae, Aspidosperma quebracho blanco, Prosopis kuntzei and Patagonula americana.
The world has complex mega-cities and interdependent infrastructures. This complication in infrastructure relations makes it sensitive to disasters and failures. Cascading failure causes blackouts for the whole system of infrastructures during disasters and the lack of performance of the emergency management stakeholders is clear during a disaster due to the complexity of the system. This research aimed to develop a new concurrent engineering model following the total recovery effort. The objectives of this research were to identify the clustered intervention utilized in the field of resilience and developing a cross-functional intervention network to enhance the resilience of societies during a disaster. Content analysis was employed to classify and categorize the intervention in the main divisions and sub-divisions and the grouping of stakeholders. The transposing system was employed to develop an integrated model. The result of this research showed that the operations division achieved the highest weight of information interchange during the response to improve the resilience of the system. The committee of logistics and the committee of rescue and relief needed the widest bandwidth of information flow in the concurrent engineering (CE) model. The contributed CE model helped the stakeholders provide a resilient response system. The final model and the relative share value of exchanging information for each workgroup can speed up recovery actions. This research found that concurrent engineering (CE) is a viable concept to be implemented as a strategy for emergency management. The result of this research can help policymakers achieve a collaborative teamwork environment and to improve resilience factors during emergency circumstances for critical infrastructures.
Copyright © by EnPress Publisher. All rights reserved.