All ophiolite associations mark epochs of active tectonic movements, which lead to significant petrological processes and modification of the relief of the Earth’s crust. Here we present a geological-petrographical characterization of one ophiolitic associations composed of: a) serpentinites; b) amphibolites-metamorphosed volcanic rocks and tuffs; c) metagabbros and metagabbrodiabases, placed among the Proterozoic metamorphic complex in the Rhodope Massif of Bulgaria on the Balkan Peninsula, South-Eastern Europе. The goal is to clarify the paleogeographical and geological setting during its creation. The methods of lithostratigraphic profiling and correlations on the database of geological field mapping were used, supplemented by microscopic, geochemical and isotopic studies of numerous rock samples. The summarized results confirm a certain stratigraphic level of the Ophiolite Association among the metamorphic complex and a complicated and protracted heterogenetic development, which is typical for the ophiolite associations created in eras of closing oceans, opposite movement of tectonic plates, subduction-obduction environment with appearance of autochthonous Neoproterozoic magmatism. Obducted fragments of serpentinites mark an old erosional continental surface, subsequently covered by transgressively deposited pelitic-carbonate sediments. The general conclusion of our study confirms the concept that the metamorphic complex of the Rhodope Massif represents a unified stratigraphic system consisting of two petrographic groups of different ages, with which we oppose the idea of a trust construction, launched by a group of geologists.
The article highlights Malaysia’s multicultural history, the advancement of Internet technology, and the worldwide appeal of Chinese food, all of which serve as a good basis for the project. This study focuses on Malaysian Chinese takeout systems. The research’s primary goals include developing new business options for the Chinese food sector, as well as enhancing customer happiness and efficiency of takeout systems. As a result, the project intended to create a Web-based system for managing several tasks associated with meal ordering by users. For the system development, an Object-Oriented System Development (OOSD) methodology was used, mostly with the Java programming language. Model-View-Control (MVC) framework was employed throughout development to improve system administration. Redis and HTTP session technologies were included for user login to increase system security. For database operations, MyBatis and MyBatis Plus were also employed to enhance ease and security. The system adheres to design principles and leverages technologies like ElementUI and jQuery to further fulfill this criterion to provide a user-friendly interface. The results of this study demonstrate significant improvements in the overall efficiency of the takeout process, leading to enhanced user experiences and greater customer satisfaction. In addition to streamlining operations, the system opens new avenues for the Malaysian Chinese food industry to capitalize on the growing demand for online food ordering. This research provides a solid foundation for future innovations in takeout systems and serves as a reference point for enhancing the Chinese gastronomy sector in a rapidly digitizing world.
A novel composite material based on polymers (polyvinyl alcohol, polyvinyl butyral) and liquid crystal (4-n-pentyl-4’-cyanobiphenyl) has been developed and studied. Configuration transformations of point defects in nematic droplets under the influence of an electric field, caused by localized changes in the concentration of NLC within the polymer matrix, have been discovered and analyzed. The boundary conditions necessary for achieving a nematic structure with homogeneous alignment of the director both within the droplet and at its surface have been established, optimizing the anisotropy of light transmission in polymer-dispersed liquid crystal (PDLC) films. Additionally, polarization effects inside nematic droplets under the application of an electric field have been identified.
Water splitting has gained significant attention as a means to produce clean and sustainable hydrogen fuel through the electrochemical or photoelectrochemical decomposition of water. Efficient and cost-effective water splitting requires the development of highly active and stable catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Carbon nanomaterials, including carbon nanotubes, graphene, and carbon nanofibers, etc., have emerged as promising candidates for catalyzing these reactions due to their unique properties, such as high surface area, excellent electrical conductivity, and chemical stability. This review article provides an overview of recent advancements in the utilization of carbon nanomaterials as catalysts or catalyst supports for the OER and HER in water splitting. It discusses various strategies employed to enhance the catalytic activity and stability of carbon nanomaterials, such as surface functionalization, hybridization with other active materials, and optimization of nanostructure and morphology. The influence of carbon nanomaterial properties, such as defect density, doping, and surface chemistry, on electrochemical performance is also explored. Furthermore, the article highlights the challenges and opportunities in the field, including scalability, long-term stability, and integration of carbon nanomaterials into practical water splitting devices. Overall, carbon nanomaterials show great potential for advancing the field of water splitting and enabling the realization of efficient and sustainable hydrogen production.
Dong brocade, a fabric renowned for its intricate patterns and ethnic symbolism, has been woven by the Dong people for generations, showcasing their cultural significance. Traditional plant dyeing technology is one of the main aspects of Dong brocade but the documentation and understanding of this is still rather limited. With regard to the use of plant dye in Dong brocade, it is not as well explored as it should be since it has a traditional aspect. The main purpose is to investigate and apply the traditional plant dyeing technique to Dong brocade for the improvement of that sustainable concept and the preservation of cultural assets. Therefore, 121 Dong villagers were interviewed to elicit their awareness regarding prehistoric plant dyeing. By observing the dyeing conditions, this study provided accurate perception and learned how to differentiate between natural and synthetic mordants through ethnobotanical perception. The strategy is intended to integrate sustainable products into Dong brocade, employing orthogonal array development to find the right dyeing conditions for corresponding plant dyes. Research revealed that 8 genera of plants which include 7 species are used in dyeing Dong brocade. The findings presented in this work prove the effectiveness of the use of plant dyes in Dong brocade, showing its advantages with 30% of frequency and CI (Color Index) indices, 8% of them being cultural. 5 for ethnic cultural sustainment, developmental and bio-diversity reasons respectively. The unique integration between the traditional dyeing technique in Dong brocade and the utilization of sustainable resources is very promising for the improvement of identity enhancement and embodiment, and the preservation of the environment.
Copyright © by EnPress Publisher. All rights reserved.