Objective: This study investigates the efficacy and safety of epidural infiltration with drugs and an oxygen-ozone mixture for treating cervicobrachialgia due to disc-radicular conflict or on a degenerative basis, utilizing both retrospective analysis and direct visualization techniques. Methods: A retrospective study involving 10 patients treated with epidural infiltrations of an oxygen-ozone mixture and cortisone was conducted. The procedures were performed under CT guidance to ensure precise delivery and to monitor the diffusion of the injected substances. Pain levels were assessed using the Numerical Rating Scale (NRS) and treatment efficacy was evaluated based on symptom relief and reduction in NSAID intake. Results: Significant pain reduction was observed post-treatment, with median NRS scores decreasing from 9 (baseline) to 2 (follow-up), and a significant decrease in on-demand NSAID intake. Only one minor complication of a headache was reported. The study also demonstrated the ability of ozone to diffuse through the epidural adipose tissue, potentially enhancing treatment efficacy. Conclusion: The combined use of an oxygen-ozone mixture and cortisone for epidural infiltration is an effective and safe treatment for cervicobrachialgia, offering significant pain relief and minimizing the risk associated with traditional epidural injections. This technique presents a viable non-surgical option for patients suffering from disc-radicular conflict or degenerative conditions.
Green manufacturing is increasingly becoming popular, especially in lubricant manufacturing, as more environmentally friendly substitutes for mineral base oil and synthetic additives are being found among plant extracts and progress in methodologies for extraction and synthesis is being made. It has been observed that some of the important performance characteristics need enhancement, of which nanoparticle addition has been noted as one of the effective solutions. However, the concentration of the addictive that would optimised the performance characteristics of interest remains a contending area of research. The research was out to find how the concentration of green synthesized aluminum oxide nanoparticles in nano lubricants formed from selected vegetable oils influences friction and wear. A bottom-up green synthesis approach was adopted to synthesize aluminum oxide (Al2O3) from aluminum nitrate (Al(NO3)3) precursor in the presence of a plant-based reducing agent—Ipomoea pes-caprae. The synthesized Al2O3 nanoparticles were characterized using TEM and XRD and found to be mostly of spherical shape of sizes 44.73 nm. Al2O3 nanoparticles at different concentrations—0.1 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt%, and 1.0 wt%—were used as additives to castor, jatropha, and palm kernel oils to formulate nano lubricants and tested alternately on a ball-on-aluminum (SAE 332) and low-carbon steel Disc Tribometer. All the vegetable-based oil nano lubricants showed a significant decrease in the coefficient of friction (CoF) and wear rate with Ball-on-(aluminum SAE 332) disc tribometer up to 0.5wt% of the nanoparticle: the best performances (eCOF = 92.29; eWR = 79.53) came from Al2O3-castor oil nano lubricant and Al2O3-palm kernel oil; afterwards, they started to increase. However, the performance indices displayed irregular behaviour for both COF and Wear Rate (WR) when tested on a ball-on-low-carbon steel Disc Tribometer.
Graphene and derivatives have been frequently used to form advanced nanocomposites. A very significant utilization of polymer/graphene nanocomposite was found in the membrane sector. The up-to-date overview essentially highlights the design, features, and advanced functions of graphene nanocomposite membranes towards gas separations. In this concern, pristine thin layer graphene as well as graphene nanocomposites with poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), polyimide, and other matrices have been perceived as gas separation membranes. In these membranes, the graphene dispersion and interaction with polymers through applying the appropriate processing techniques have led to optimum porosity, pore sizes, and pore distribution, i.e., suitable for selective separation of gaseous molecules. Consequently, the graphene-derived nanocomposites brought about numerous revolutions in high-performance gas separation membranes. The structural diversity of polymer/graphene nanocomposites has facilitated the membrane selective separation, permeation, and barrier processes, especially in the separation of desired gaseous molecules, ions, and contaminants. Future research on the innovative nanoporous graphene-based membrane can overcome design/performance-related challenging factors for technical utilizations.
The erudite priest Marciano Di Leo (1751–1819), a prominent personality in the historical and geographical panorama of his time, not only in his home territory, authored a vast literary and poetic production but also tried his hand at producing some maps, referring to a province of the Kingdom of Naples. At a time when the principles of geodetic cartography had become increasingly known, even locally, hand in hand with improvements in technology and accuracy of measurements, the author reflected on the historical narratives of the progress of the European (and Neapolitan) Enlightenment and translated them into an unpublished manuscript of statistical, historical, and geographical nature, accompanied by numerous maps of various scales. The rediscovery of a largely unknown—and therefore not very thorough—minor cartographic production underscores the spread, even in more marginal contexts, of the most innovative ideas and increasingly precise scientific foundations in the cartographic-mathematical representation of the territory. It also illustrates the role of a number of intellectuals in the service of the political choices of their time, in an attempt—often unrealized—to bring about a decisive change of course in public administration, in accordance with Enlightenment ideals and in the spirit of reform that spread throughout Europe thanks to the French Revolution.
This comprehensive review explores the forefront of nanohybrid materials, focusing on the integration of coordination materials in various applications, with a spotlight on their role in the development of flexible solar cells. Coordination material-based nanohybrids, characterized by their unique properties and multifunctionality, have garnered significant attention in fields ranging from catalysis and sensing to drug delivery and energy storage. The discussion investigates the synthesis methods, properties, and potential applications of these nanohybrids, underscoring their versatility in materials science. Additionally, the review investigates the integration of coordination nanohybrids in perovskite solar cells (PSCs), showcasing their ability to enhance the performance and stability of next-generation photovoltaic devices. The narrative further expands to encompass the synthesis of luminescent nanohybrids for bioimaging purposes and the development of layered, two-dimensional (2D) material-based nanostructured hybrids for energy storage and conversion. The exploration culminates in an examination of the synthesis of conductive polymer nanostructures, elucidating their potential in drug delivery systems. Last but not least, the article discusses the cutting-edge realm of flexible solar cells, emphasizing their adaptability and lightweight design. Through a systematic examination of these diverse nanohybrid materials, this review sheds light on the current state of the art, challenges, and prospects, providing valuable insights for researchers and practitioners in the fields of materials science, nanotechnology, and renewable energy.
Copyright © by EnPress Publisher. All rights reserved.