Purpose: This research examines the intricate interplay between Business Intelligence (BI), Big Data Analytics (BDA), and Artificial Intelligence (AI) within the realm of Supply Chain Management (SCM). While the integration of these technologies has promised improved operational efficiency and decision-making capabilities, concerns about complexities and potential overreliance on technology persist. The study aims to provide insights into achieving a balance between data-driven insights and qualitative factors in SCM for sustained competitiveness. Design/methodology/approach: The research executed interviews with ten Arab Gulf-based consulting firms. These companies’ ability to successfully complete BI projects is well recognised. Findings: Through examining the interplay of human judgement and data-driven strategies, addressing integration challenges, and understanding the risks of excessive data reliance, the research enhances comprehension of the modern SCM landscape. It underscores BI’s foundational role, the necessity of balanced human input, and the significance of customer-centric strategies for lasting competitive advantage and relationships. Practical implications: The research provided information for organizations seeking to effectively navigate the complexities of integrating data-driven technologies in SCM. The research is a foundation for future studies to delve deeper into quantitative measurement methodologies and effective data security strategies in the SCM context. Originality: The research highlights the value of integrating BI, BDA, and AI in SCM for improved efficiency, cost reduction, and customer satisfaction, emphasising the need for a balanced approach that combines data-driven insights, human judgement, and customer-centric strategies to maintain competitiveness.
An extensive assessment index system was developed to evaluate the integration of industry and education in higher vocational education. The system was designed using panel data collected from 31 provinces in China between 2016 and 2022. The study utilized the entropy approach and coupled coordination degree model to examine the temporal and spatial changes in the level of growth of the integration of industry and education in higher vocational education, as well as the factors that impact it. In order to examine how the integration of industry and education in higher vocational education develops over time and space, as well as the factors that affect it, we utilized spatial phasic analysis, Tobit regression model, and Dagum’s Gini coefficient. The study’s findings suggest that between 2016 and 2022, the integration of industry and education in higher vocational education showed a consistent improvement in overall development. Nevertheless, there are still significant regional differences, with certain areas showing limited levels of integration, while the bulk of regions are either in a state of low integration with high clustering or low integration with low clustering. Most locations showed either a “low-high” or “low-low” level of agglomeration, indicating a significant degree of spatial concentration, with a clear trend of higher concentration in the east and lower concentration in the west. The progress of industrial structure and the degree of regional economic development have a substantial impact on the amount of integration of industry and education in higher vocational education. There is a notable increase in the amount of integration between industry and education in higher vocational education, which has a favorable effect. Conversely, the local employment rate has a substantial negative effect on this integration. Moreover, the direct influence of industrial structure optimization is restricted. The Gini coefficient of the development level of integration of industry and education in higher vocational education exhibits a slight rising trend. Simultaneously, there is a varying increase in the Gini coefficient inside the group and a decrease in the Gini coefficient between the groups. The disparities in the level of integration between Industry and Education in the provincial area primarily stem from inter-group variations across the locations. To promote the integration of industry and education in higher vocational education, it is recommended to strengthen policy support and resource allocation, address regional disparities, improve professional configuration, and increase investment in scientific and technological innovation and talent development.
The increase in energy consumption is closely linked to environmental pollution. Healthcare spending has increased significantly in recent years in all countries, especially after the pandemic. The link between healthcare spending, greenhouse gas emissions and gross domestic product has led many researchers to use modelling techniques to assess this relationship. For this purpose, this paper analyzes the relationship between per capita healthcare expenditure, per capita gross domestic product and per capita greenhouse gas emissions in the 27 EU countries for the period 2000 to 2020 using Error Correction Westerlund, and Westerlund and Edgerton Lagrange Multiplier (LM) bootstrap panel cointegration test. The estimation of model coefficients was carried out using the Augmented Mean Group (AMG) method adopted by Eberhardt and Teal, when there is heterogeneity and cross-sectional dependence in cross-sectional units. In addition, Dumitrescu and Hurlin test has been used to detect causality. The findings of the study showed that in the long run, per capita emissions of greenhouse gases have a negative effect on per capita health expenditure, except from the case of Greece, Lithuania, Luxembourg and Latvia. On the other hand, long-term individual co-integration factors of GDP per capita have a positively strong impact on health expenditure per capita in all EU countries. Finally, Dumitrescu and Urlin’s causality results reveal a significant one-way causality relationship from GDP per capita and CO2 emissions per capita to healthcare expenditure per capita for all EU countries.
This paper presents an assessment approach to fostering socioeconomic re-development and resilience in Iraqi regions emerging from the destruction and instability, in the aftermath of the war conflict in Iraq. Focusing on the intricate interplay of logistics infrastructure and economic recovery, the present study proposes a novel framework that integrates general resilience insights, data analytics, infrastructure systems, and decision support from Data Envelopment Analysis (DEA). We draw inspiration also from historical cases on “creative destruction” or “Blessing in Disguise” (BiD) phenomena, like the post-WWII reconstruction of Rotterdam, so as to develop the notion of stepwise or cascadic prosilience, analyzing how innovative logistics systems may in various stages contribute to economic rejuvenation. Our approach recognizes the multifaceted nature of regional resilience capacity, encompassing both static (conserving resources, rerouting, etc.) and dynamic (accelerating recovery through innovative strategies) dimensions. The logistics aspect spans both the supply side (new infrastructure, ICT facilities) and the demand side (changing transportation flows and product demands), culminating in an integrated perspective for sustainable growth of Iraqi regions. In our study, we explore several forward-looking strategic future options (scenarios) for recovery and reconstruction policy factors in the context of regional development in Iraq, regarding them as crucial strategic elements for effective post-conflict rebuilding and regeneration. Given that such assets and infrastructures typically extend beyond a single city or area, their geographic scope is broader, calling for a multi-region approach. By leveraging the extended DEA approach by an incorporation of a super-efficiency (SE) DEA approach so as to better discriminate among efficient Decision-Making Units (DMUs)—in this case, regions in Iraq—our research aims to present actionable and effective insights for infrastructure investment strategies at regional-governorate scale in Iraq, that optimize efficiency, sustainability and resilience. This approach may ultimately foster prosperous and stable post-conflict regional economies that display—by means of a cascadic change—a new balanced prosilient future.
This article presents an analysis of Russia’s outward foreign direct investment based on the balance of payments. The country has been affected by the “Dutch disease,” characterized by a heavy reliance on the mining industry and revenues from oil and gas exports. The financial account reveals a consistent outflow of capital from Russia, surpassing inflows. A significant portion of domestic investment goes abroad, often to offshore destinations. This capital outflow has not been fully offset by foreign capital inflows. These findings underscore the challenges faced by Russia in managing its financial position, including the need to address capital outflows, diversify the economy, and reduce dependence on raw material exports. Furthermore, this article aims to identify the presence of Russian capital in OECD countries by comparing data from the Central Bank of Russia and the OECD. The analysis reveals significant discrepancies between the two datasets, primarily due to unavailable or confidential information in the OECD dataset. These variations can also be attributed to differences in methodology and the specific nature of Russian outward direct investments, particularly those involving offshore jurisdictions. As a result, accurately determining the extent of Russian capital in OECD countries based on the available data becomes a challenging task (including for the tourism industry as well).
To evaluate the efficiency of decision-making units, researchers continually develop models simulating the production process of organizations. This study formulates a network model integrating undesirable outputs to measure the efficiency of Vietnam’s banking industry. Employing methodologies from the data envelopment analysis (DEA) approach, the efficiency scores for these banks are subsequently computed and comparatively analyzed. The empirical results indicate that the incorporation of undesirable output variables in the efficiency evaluation model leads to significantly lower efficiency scores compared to the conventional DEA model. In practical terms, the study unveils a deterioration in the efficiency of banking operations in Vietnam during the post-Covid era, primarily attributed to deficiencies in credit risk management. These findings contribute to heightening awareness among bank managers regarding the pivotal importance of credit management activities.
Copyright © by EnPress Publisher. All rights reserved.