Artificial Intelligence (AI) has become a pivotal force in transforming the retail industry, particularly in the online shopping environment. This study investigates the impact of various AI applications—such as personalized recommendations, chatbots, predictive analytics, and social media engagement—on consumer buying behaviors. Employing a quantitative research design, data was collected from 760 respondents through a structured online survey. The snowball sampling technique facilitated the recruitment of participants, focusing on diverse demographics and their interactions with AI technologies in online retail. The findings reveal that AI-driven personalization significantly enhances consumer purchase intentions and satisfaction. Multiple regression analysis shows that AI personalization (β = 0.35, p < 0.001) has the most substantial impact on purchase intention, followed by chatbot effectiveness (β = 0.25, p < 0.001), predictive analytics (β = 0.20, p < 0.001), and social media engagement (β = 0.15, p < 0.01). Similarly, AI personalization (β = 0.30, p < 0.001), predictive analytics (β = 0.25, p < 0.001), and chatbot effectiveness (β = 0.20, p < 0.001) significantly influence consumer satisfaction. The hierarchical regression analysis underscores the importance of ethical considerations, showing that ethical and transparent use of AI increases consumer trust and engagement. Model 1 explains 45% of the variance in consumer behavior (R2 = 0.45, F = 154.75, p < 0.001), while Model 2, incorporating ethical concerns, explains an additional 10% (R2 = 0.55, F = 98.25, p < 0.001). This study highlights the necessity for retailers to leverage AI technologies ethically and effectively to gain a competitive edge, improve customer satisfaction, and drive long-term success. Future research should explore the long-term impacts of AI on consumer behavior and the integration of emerging technologies such as augmented reality and the Internet of Things (IoT) in retail.
This study investigates the impact of artificial intelligence (AI) integration on preventing employee burnout through a human-centered, multimodal approach. Given the increasing prevalence of AI in workplace settings, this research seeks to understand how various dimensions of AI integration—such as the intensity of integration, employee training, personalization of AI tools, and the frequency of AI feedback—affect employee burnout. A quantitative approach was employed, involving a survey of 320 participants from high-stress sectors such as healthcare and IT. The findings reveal that the benefits of AI in reducing burnout are substantial yet highly dependent on the implementation strategy. Effective AI integration that includes comprehensive training, high personalization, and regular, constructive feedback correlates with lower levels of burnout. These results suggest that the mere introduction of AI technologies is insufficient for reducing burnout; instead, a holistic strategy that includes thorough employee training, tailored personalization, and continuous feedback is crucial for leveraging AI’s potential to alleviate workplace stress. This study provides valuable insights for organizational leaders and policymakers aiming to develop informed AI deployment strategies that prioritize employee well-being.
The research objective is to affirm the play of gender diversity and the role of leaders in promoting the concept among businesses for growth and long-term sustainability. The detailed literature search indicated that the culture of gender diversity can only be implemented if the leader practices three key leadership elements, which are effective communication (EC), emotional intelligence (EI), and better decision-making (DM). The paper strives to project the importance of gender diversity in managing market competition, the role of a leader in managing gender diversity, and how gender diversity impacts business growth and sustainability. The paper provides a different model for organizational leaders to instill and promote diversity. The study undertook a literature research approach to gain an in-depth understanding of the leadership role based on the current pool of literature to identify the factors that could promote diversity. The literature review concurred with the importance of implementing gender diversity in the business and assessing the long-term growth and the critical role of leadership as an enabler. The research concluded that leaders are required to play an active role in promoting gender equality to ensure it would directly impact business growth. The study provides a potential conceptual framework for future research to take over subsequently using a quantitative or qualitative method.
Countering cyber extremism is a crucial challenge in the digital age. Social media algorithms, if designed and used properly, have the potential to be a powerful tool in this fight, development of technological solutions that can make social networks a safer and healthier space for all users. this study mainly aims to provide a comprehensive view of the role played by the algorithms of social networking sites in countering electronic extremism, and clarifying the expected ease of use by programmers in limiting the dissemination of extremist data. Additionally, to analyzing the intended benefit in controlling and organizing digital content for users from all societal groups. Through the systematic review tool, a variety of previous literature related to the applications of algorithms in the field of online radicalization reduction was evaluated. Algorithms use machine learning and analysis of text and images to detect content that may be harmful, hateful, or call for violence. Posts, comments, photos and videos are analyzed to detect any signs of extremism. Algorithms also contribute to enhancing content that promotes positive values, tolerance and understanding between individuals, which reduces the impact of extremist content. Algorithms are also constantly updated to be able to discover new methods used by extremists to spread their ideas and avoid detection. The results indicate that it is possible to make the most of these algorithms and use them to enhance electronic security and reduce digital threats.
This paper tries to understand economic, social and legal implications of the introduction and usage of MediSearch (AI search engine) in the Indian healthcare context. Discussing the economic ramifications, the paper highlights the potential for cost savings, the influence on healthcare accessibility, and the shifts in traditional medical paradigms. On the social side, the study explains ability of AI based platforms to bridge healthcare disparities, with a potential for enhancing general health literacy among the general population. From a legal standpoint, study highlights the concerns related to data privacy, regulatory issues, and possible malpractice implications. With the integration of these perspectives, the study also explains opportunities, challenges and future of MediSearch from the Indian health perspective.
Copyright © by EnPress Publisher. All rights reserved.