In the era of artificial intelligence, smart clothing, as a product of the interaction between fashion clothing and intelligent technology, has increasingly attracted the attention and affection of enterprises and consumers. However, to date, there is a lack of focus on the demand of silver-haired population’s consumers for smart clothing. To adapt to the rapidly aging modern society, this paper explores the influencing factors of silver-haired population’s demand for smart clothing and proposes a corresponding consumer-consumption-need theoretical model (CCNTM) to further promote the development of the smart clothing industry. Based on literature and theoretical research, using the technology acceptance model (TAM) and functional-expressive-aesthetic consumer needs model (FEAM) as the foundation, and introducing interactivity and risk perception as new external variables, a consumer-consumption-need theoretical model containing nine variables including perceived usefulness, perceived ease of use, functionality, expressiveness, aesthetics, interactivity, risk perception, purchase attitude, and purchase intention was constructed. A questionnaire survey was conducted among the Chinese silver-haired population aged 55–65 using the Questionnaire Star platform, with a total of 560 questionnaires issued. The results show that the functionality, expressiveness, interactivity, and perceived ease of use of smart clothing significantly positively affect perceived usefulness (P < 0.01); perceived usefulness, perceived ease of use, aesthetics, and interactivity significantly positively affect the purchase attitude of the silver-haired population (P < 0.01); perceived usefulness, aesthetics, interactivity, and purchase attitude significantly positively affect the purchase intention of the silver-haired population (P < 0.01); functionality and expressiveness significantly positively affect perceived ease of use (P < 0.01); risk perception significantly negatively affects purchase attitude (P < 0.01). Through the construction and empirical study of the smart clothing consumer-consumption-need theoretical model, this paper hopes to stimulate the purchasing behavior of silver-haired population’s consumers towards smart clothing and enable them to enjoy the benefits brought by scientific and technological advancements, which to live out their golden years in comfort, also, promote the rapid development of the smart clothing industry.
With the rapid increase in electric bicycle (e-bikes) use, the rate of associated traffic accidents has also escalated. Prior studies have extensively examined e-bike riders’ injury risks, yet there is a limited understanding of how their behavior contributes to these accidents. This study aims to explore the relationship between e-bike riders’ risk-taking behaviors and the incidence of traffic accidents, and to propose targeted safety measures based on these insights. Utilizing a mixed-methods approach, this research integrates quantitative data from traffic accident reports and qualitative observations from naturalistic studies. The study employs a binary logistic regression model to analyze risk factors and uses observational data to substantiate the model findings. The analysis reveals that assertive driving behaviors among e-bike riders, such as running red lights and speeding, significantly contribute to the high rate of accidents. Moreover, the lack of protective gear and inadequate safety training are identified as critical factors increasing the risk of severe injuries. The study concludes that comprehensive policy interventions, including stricter enforcement of traffic laws and mandatory safety training for e-bike riders, are essential to mitigate the risks associated with e-bike use. The findings advocate for an integrated approach to urban traffic management that enhances the safety of all road users, particularly vulnerable e-bike riders.
The principal objective of this article is to gain insight into the biases that shape decision-making in contexts of risk and uncertainty, with a particular focus on the prospect theory and its relationship with individual confidence. A sample of 376 responses to a questionnaire that is a replication of the one originally devised by Kahneman and Tversky was subjected to analysis. Firstly, the aim is to compare the results obtained with the original study. Furthermore, the Cognitive Reflection Test (CRT) will be employed to ascertain whether behavioural biases are associated with cognitive abilities. Finally, in light of the significance and contemporary relevance of the concept of overconfidence, we propose a series of questions designed to assess it, with a view to comparing the various segments of respondents and gaining insight into the profile that reflects it. The sample of respondents is divided according to gender, age group, student status, professional status as a trader, status as an occasional investor, and status as a behavioural finance expert. It can be concluded that the majority of individuals display a profile of underconfidence, and that the hypotheses formulated by Kahneman and Tversky are generally corroborated. The low frequency of overconfident individuals suggests that the results are consistent with prospect theory in all segments, despite the opposite characteristics, given the choice of the less risk-averse alternative. These findings are useful for regulators to understand how biases affect financial decision making, and for the development of financial literacy policies in the education sector.
Resisting the adoption of medical artificial intelligence (AI), it is suggested that this opposition can be overcome by combining AI awareness, AI risks, and responsibility displacement. Through effective integration of public AI dangers and displacement of responsibility, some of these major concerns can be alleviated. The United Kingdom’s National Health Service has adopted the use of chatbots to provide medical advice, whereas heart disease diagnoses can be made by IBM’s Watson. This has the ability to improve healthcare by increasing accuracy, efficiency, and patient outcomes. The resistance may be due to concerns about losing jobs, anxieties about misdiagnosis or medical mistakes, and the consciousness of AI systems drifting more responsibility away from medical professionals. There is hesitancy among healthcare professionals and the general public about the deployment of AI, despite the fact that healthcare is being revolutionised by AI, its uses are pervasive. Participants’ awareness of AI in healthcare, AI risk, resistance to AI, responsibility displacement and ethical considerations were gathered through questionnaires. Descriptive statistics, chi-square tests and correlation analyses were used to establish the relationship between resistance and medical AI. The study’s objective seeks to collect data on primary and public AI awareness, perceptions of risk and feelings of displacement that the professionals have regarding medical AI. Some of these concerns can be resolved when AI awareness is effectively integrated and patients, healthcare providers, as well as the general public are well informed about AI’s potential advantages. Trust is built when, AI related issues such as bias, transparency, and data privacy are critically addressed. Another objective is to develop a seamless integration of risk management, communication and awareness of AI. Lastly to assess how this comprehensive approach has affected hospital settings’ ambitions to use medical AI. Fusing AI awareness, risk management, and effective communication can be used as a comprehensive strategy to address and promote the application of medical AI in hospital settings. An argument made by Chen et al. is that providing training in AI can improve adoption intentions while lowering complexity through the awareness of AI.
In this study, we explore the impact of contemporary bank run incidents on stock market performance, taking into consideration insured deposit concentration. Specifically, we use data from the recent downfall of the Silicon Valley Bank (SVB). By employing event study methods with the mean-adjusted return model and market models, we evaluate the cumulative abnormal returns (CARs). Our findings reveal a substantial negative CAR for all the listed companies in our sample, suggesting that the SVB crisis adversely affected stock returns. Further analysis shows an even more pronounced effect on the banking sector and that banks with a high concentration of insured deposits experienced economically and statistically less negative CARs. We also find that the response by the Treasury Department, the Federal Reserve, the Federal Deposit Insurance Corporation, and other agencies—aimed at fully safeguard all depositors—led a rebound in CARs. Our results highlight the importance of deposit insurance policy and regulatory responses in protecting the financial system during panic events.
In order to diversify a portfolio, find prices, and manage risk, derivatives products are now necessary. There is a lack of understanding of the true influence of derivatives on the behavior of the underlying assets, their volatility consequences, and their pricing as complex instruments. There is a dearth of empirical research on how these instruments impact company risk exposures and inconsistent findings. This study examines corporate derivatives’ impact on stock price exposure and systematic risk in South African non-financial firms. Using a dataset of listed firms from 2013 to 2023, we employ Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models to assess the effect of derivatives on return volatility and beta, a measure of systematic risk. Additionally, we apply the Generalized Method of Moments (GMM) to address potential endogeneity between firm characteristics and derivatives use. Our findings suggest that firms using derivatives experience lower overall volatility and reduced systematic risk compared to non-users. The results are robust to various control factors, including firm size, leverage, and macroeconomic conditions. This study fills a gap in the literature by focusing on an underrepresented emerging market and provides insights relevant to global risk management practices.
Copyright © by EnPress Publisher. All rights reserved.