The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant interest in modern agriculture. The appeal of AI arises from its ability to rapidly and precisely analyze extensive and complex information, allowing farmers and agricultural experts to quickly identify plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant attention in the world of agriculture and agronomy. By harnessing the power of AI to identify and diagnose plant diseases, it is expected that farmers and agricultural experts will have improved capabilities to tackle the challenges posed by these diseases. This will lead to increased effectiveness and efficiency, ultimately resulting in higher agricultural productivity and reduced losses caused by plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has resulted in significant benefits in the field of agriculture. By using AI technology, farmers and agricultural professionals can quickly and accurately identify illnesses affecting their crops. This allows for the prompt adoption of appropriate preventative and corrective actions, therefore reducing losses caused by plant diseases.
The present study, developed under a quantitative approach, explanatory scope and causal correlational design, aims to determine the influence of invisible learning on the research competence of high school students in two private schools in the city of Lima, Peru, whose educational models seek to develop autonomous learning and research through discovery learning and experimentation. Two questionnaires were applied to 120 students of the VII cycle of basic education, one to measure the perception regarding invisible learning with 20 items and the other to measure investigative competencies with 21 items; both instruments underwent the corresponding validity and reliability tests before their application. Among the main findings, descriptive results were obtained at a medium level for both variables, the correlations found were significant and moderate, and as for influence, the coefficient of determination R2 yielded a value of 0.13, suggesting that 13% of investigative competence is predicted by invisible learning. These results show that autonomy, the use of digital technologies, metacognition and other aspects that are part of invisible learning prepare students to solve problems of varying complexity, allowing them to face the challenges of contemporary knowledge in an innovative and effective manner.
The paper considers an important problem of the successful development of social qualities in an individual using machine learning methods. Social qualities play an important role in forming personal and professional lives, and their development is becoming relevant in modern society. The paper presents an overview of modern research in social psychology and machine learning; besides, it describes the data analysis method to identify factors influencing success in the development of social qualities. By analyzing large amounts of data collected from various sources, the authors of the paper use machine learning algorithms, such as Kohonen maps, decision tree and neural networks, to identify relationships between different variables, including education, environment, personal characteristics, and the development of social skills. Experiments were conducted to analyze the considered datasets, which included the introduction of methods to find dependencies between the input and output parameters. Machine learning introduction to find factors influencing the development of individual social qualities has varying dependence accuracy. The study results could be useful for both practical purposes and further scientific research in social psychology and machine learning. The paper represents an important contribution to understanding the factors that contribute to the successful development of individual social skills and could be useful in the development of programs and interventions in this area. The main objective of the research was to study the functionalities of the machine learning algorithms and various models to predict the students’s success in learning.
Even in the late stages of the COVID-19, the physical and psychological trauma caused by the epidemic continues to affect people, particularly university students, whose physical and psychological health is vulnerable to environmental influences. The purpose of this article is to investigate the relationship between learning adaptability and “state” anxiety among university students enrolled during the COVID-19(2020-2022), as well as the role of self-management in mediating this process. The findings reveal a negative association between college students' academic adjustment and their state anxiety, a process that also includes a mediation role for self-management, with subjects in this research being college students enrolled during COVID-19. This study offers a theoretical foundation for investigating the factors influencing anxiety from an operationalized viewpoint, as well as for further effective regulation of university students' mental health and anxiety reduction.
The present study focuses on improving Cognitive Radio Networks (CRNs) based on applying machine learning to spectrum sensing in remote learning scenarios. Remote education requires connection dependability and continuity that can be affected by the scarcity of the amount of usable spectrum and suboptimal spectrum usage. The solution for the proposed problem utilizes deep learning approaches, namely CNN and LSTM networks, to enhance the spectrum detection probability (92% detection accuracy) and consequently reduce the number of false alarms (5% false alarm rate) to maximize spectrum utilization efficiency. By developing the cooperative spectrum sensing where many users share their data, the system makes detection more reliable and energy-saving (achieving 92% energy efficiency) which is crucial for sustaining stable connections in educational scenarios. This approach addresses critical challenges in remote education by ensuring scalability across diverse network conditions and maintaining performance on resource-constrained devices like tablets and IoT sensors. Combining CRNs with new technologies like IoT and 5G improves their capabilities and allows these networks to meet the constantly changing loads of distant educational systems. This approach presents another prospect to spectrum management dilemmas in that education delivery needs are met optimally from any STI irrespective of the availability of resources in the locale. The results show that together with machine learning, CRNs can be considered a viable path to improving the networks’ performance in the context of remote learning and advancing the future of education in the digital environment. This work also focuses on how machine learning has enabled the enhancement of CRNs for education and provides robust solutions that can meet the increasing needs of online learning.
In the process of teaching and learning at any stage, the important role of interest guidance cannot be ignored. Especially in college mathematics teaching, mathematical knowledge is very complex and abstract, and most students are unable to effectively understand and master it during the learning process. So it is even more important to fully stimulate students' interest in learning. This article analyzes the significance and current situation of stimulating students' learning interest in university mathematics teaching, and conducts effective strategy analysis. In order to effectively awaken students' desire for knowledge, guide students to change from passive learning to active learning, so that students can continue to grow and progress in this process.
Copyright © by EnPress Publisher. All rights reserved.