The growing interconnectedness of the world has led to a rise in cybersecurity risks. Although it is increasingly conventional to use technology to assist business transactions, exposure to these risks must be minimised to allow business owners to do transactions in a secure manner. While a wide range of studies have been undertaken regarding the effects of cyberattacks on several industries and sectors, However, very few studies have focused on the effects of cyberattacks on the educational sector, specifically higher educational institutions (HEIs) in West Africa. Consequently, this study developed a survey and distributed it to HEIs particularly universities in West Africa to examine the data architectures they employed, the cyberattacks they encountered during the COVID-19 pandemic period, and the role of data analysis in decision-making, as well as the countermeasures employed in identifying and preventing cyberattacks. A total of one thousand, one hundred and sixty-four (1164) responses were received from ninety-three (93) HEIs and analysed. According to the study’s findings, data-informed architecture was adopted by 71.8% of HEIs, data-driven architecture by 24.1%, and data-centric architecture by 4.1%, all of which were vulnerable to cyberattacks. In addition, there are further concerns around data analysis techniques, staff training gaps, and countermeasures for cyberattacks. The study’s conclusion includes suggestions for future research topics and recommendations for repelling cyberattacks in HEIs.
The challenge of developing cadastral infrastructure in Africa is inextricably linked to the global issues of sustainable development. Indeed, in light of the constraints inherent to conventional cadastral systems, alternative systems developed through land regulation programmes (LRPs) are compelled to align with the tenets of sustainable development. A discursive study, conducted through a semisystematic literature review, enabled the selection of 53 documents on cadastral systems deployed in multiple countries across the African continent. A number of systems were identified and grouped into four categories: urban, rural, participatory and hybrid cadastral systems. These systems are developed on the basis of standards and sociotechnical approaches, including the LADM, STDM, and FFP, as well as innovative technologies such as blockchain. However, their sustainability is limited by the fact that they are not multipurpose cadastral systems. Consequently, there is an urgent need for studies to develop a global framework that will produce truly significant and sustainable results for all sections of society.
The economy, unemployment, and job creation of South Africa heavily depend on the growth of the agricultural sector. With a growing population of 60 million, there are approximately 4 million small-scale farmers (SSF) number, and about 36,000 commercial farmers which serve South Africa. The agricultural sector in South Africa faces challenges such as climate change, lack of access to infrastructure and training, high labour costs, limited access to modern technology, and resource constraints. Precision agriculture (PA) using AI can address many of these issues for small-scale farmers by improving access to technology, reducing production costs, enhancing skills and training, improving data management, and providing better irrigation infrastructure and transport access. However, there is a dearth of research on the application of precision agriculture using artificial intelligence (AI) by small scale farmers (SSF) in South Africa and Africa at large. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Bibliometric analysis guidelines were used to investigate the adoption of precision agriculture and its socio-economic implications for small-scale farmers in South Africa or the systematic literature review (SLR) compared various challenges and the use of PA and AI for small-scale farmers. The incorporation of AI-driven PA offers a significant increase in productivity and efficiency. Through a detailed systematic review of existing literature from inception to date, this study examines 182 articles synthesized from two major databases (Scopus and Web of Science). The systematic review was conducted using the machine learning tool R Studio. The study analyzed the literature review articled identified, challenges, and potential societal impact of AI-driven precision agriculture.
This study examines the relationship between macroeconomic determinants and education levels in eight selected African oil-exporting countries (AOECs) over the period 2000–2022. Drawing on human capital theory, the paper scrutinizes the impact of factors such as income inequality, health outcome, economic growth, human development, unemployment, education expenditure, institutional quality, and energy consumption on education levels. Employing robust estimation techniques such as fixed effects (FE), random effects (RE), pooled mean group (PMG) and cross-section autoregressive distributed lag model (CS-ARDL), the study unveils vital static and dynamic interactions among these determinants and education levels. Findings reveal notable positive and significant connections between education levels and some of the variables—human capital development, institutional quality, government expenditure on education, and energy consumption, while income inequality demonstrates a consistent negative relationship. Unexpectedly, health outcomes exhibit a negative impact on education levels, warranting further investigation. Furthermore, the analysis deepens understanding of long-run and short-run relationships, highlighting, for example, the contradictory impact of gross domestic product (GDP) and unemployment on education levels in AOECs. Finally, the study recommends targeted human development programs, enhanced public investment in education, institutional reforms for good governance, and sustainable energy infrastructure development.
This study investigates the role of agricultural exports as a potential engine of economic growth in South Africa, employing a cointegration and error correction model (ECM) framework on time series data from 1980 to 2023. The results confirm a long-run equilibrium relationship between agricultural exports and economic growth, with lagged total exports and employment significantly influencing GDP growth in the short run. However, other factors like foreign direct investment, gross capital formation, and population growth did not exhibit a statistically significant impact. These findings underscore the importance of agricultural exports in driving South Africa’s economic growth. To further enhance this potential, the study recommends establishing a consistent and transparent policy environment to foster investor confidence and long-term planning in the agricultural sector, expanding the range of agricultural exports to reduce vulnerability to external shocks and enhance overall economic resilience and streamlining customs procedures, reducing trade barriers, and improving logistics to enhance the competitiveness of South African agricultural exports in the global market. These policy recommendations, grounded in empirical evidence, offer a roadmap for harnessing the full potential of agricultural exports to drive sustainable economic growth in South Africa.
Goat farming plays an important economic role in numerous developing countries, with Africa being a home to a considerable portion of the global goat population. This study examined the socioeconomic determinants affecting goat herd size among smallholder farmers in Lephalale Local Municipality of the Limpopo Province in South Africa. A simple random sampling technique was used to select 61 participants. The socioeconomic characteristics of smallholder goat farmers in Lephalale Local Municipality were identified and described using descriptive statistics on one hand. On the other hand, a Multiple linear regression model was employed to analyse the socioeconomic determinants affecting smallholder goat farmers’ herd sizes. Findings from the Multiple linear regression model highlighted several key determinants, including the age of the farmer, gender of the farmer, education level, and marital status of farmers, along with determinants like distance to the markets, provision of feed supplements, and access to veterinary services. Understanding these determinants is crucial for policymakers and practitioners to develop targeted strategies aimed at promoting sustainable goat farming practices and improving the livelihoods of smallholder farmers in the region.
Copyright © by EnPress Publisher. All rights reserved.