With the rapid development of digital technology, the digital infrastructure enables the rapid formation, modification and refactoring of digital products through continuous experimentation and implementation, reduces the cost of innovation, and facilitates the implementation of digital innovation. To solve the problem that the technical scope of digital innovation is relatively concentrated and the knowledge flow between the achievements of digital innovation is insufficient, this study investigates the impact of digital infrastructure on organizational digital innovation in China. The cross-sectional study was conducted from November 2023 to March 2024 among 384 employees and managers in the core industries of the digital economy, as well as enterprises in traditional industries in China. Data were collected using closed-ended questionnaires adapted from previous literature. Structural equation modelling (SEM) was employed to analyze the data using SPSS 28 and AMOS 28. The results reveal that both the information infrastructure and the innovation infrastructure have a positive and direct effect on organizational digital innovation in China, as well as an indirect effect through data flows. Converged infrastructure has only an indirect impact on organizational digital innovation through the flow of data.
This project analyzes the evolution of the manufacturing sector in Portugal from 2009 to 2021, focusing on the variations in the number of active companies across various subcategories, such as food, textiles, and metal product industries. The goal of this analysis is to understand the dynamics of growth and contraction within each sector, providing insights for companies to adjust their market and operational strategies. Key objectives include analyzing the overall evolution in the number of companies, identifying subcategories with notable changes, and providing a comprehensive analysis of observed trends and patterns. The study is based on data from PORDATA 2024, and the research employs temporal trend analysis, linear and quadratic regression, and the Pareto representation to identify patterns of growth and decline. By comparing annual data, the project uncovers periods of growth and decline, allowing for a deeper understanding of the sector’s dynamics. The findings also highlight variations in periods of economic crises and during the Covid-19 pandemic, and recommendations for action are presented to support businesses resilience and continuity. These results are valuable for companies within the manufacturing sectors analyzed and policy makers, guiding strategic decisions to navigate the complexities of the market dynamics and to ensuring long-term organizational sustainable success.
Urban infrastructures and services—such as public transportation, innovation bodies and environmental services—are important drivers for the sustainable development of our society. How effectively citizens, institutions and enterprises interact, how quickly technological innovations are implemented and how carefully new policies are pursued, synergically determine development. In this work, data related to urban infrastructure features such as patents and recycled waste referred to 106 province areas in Italy are investigated over a period of twenty years (2001–2020). Scaling laws with exponents characterizing the above mentioned features are observed and adopted to scrutinize whether and how multiple interactions within a population have amplification effects on the recycling and innovation performance. The study shows that there is a multiplication effect of the population size on the innovation performance of territories, meaning that the dynamic interactions among the elements of the innovation eco-systems in a territory increase its innovation performance. We discuss how to use such approach and the related indexes for understanding metropolitan development policy.
Objective: to achieve accurately and rapidly the mapping of agricultural land use and crop distribution at the township scale. Methods: this study, based on specific methods, such as, time-series remote sensing index threshold classification and maximum likelihood, classifies each land use type and extracts crop spatial information, under the guidance of Sentinel-2A remote sensing images, to carry out agricultural land use mapping at township scale. And the mapping concerned will be verified by comparing with an agricultural spatial information map of a 0.5 m resolution, which is based on WorldVieW-2 fused images. Results: (1) the area accuracy of grain and oil crop land, vegetable land, agricultural facilities land and garden land is fairly good, with 92.93%, 98.98%, 95.71% and 95.14% respectively, and within 8% variation from actual area; (2) the spatial information of plot boundary, farmland road network, and canal network produced by OSM road data and historical high-resolution images was overlayed with the classification results of Sentinel-2A multi-spectral image for mapping, which can improve the accuracy of plot boundary information of classification results for the image with 10 m resolution. Conclusions: the use of multi-source information fusion method, agricultural land use and crop distribution space big data produced by Sentinel-2A optical image, can effectively improve the accuracy and timeliness of land use mapping at the township scale, to provide technical reference for the application of remote sensing big data to carry out agricultural landscape analysis at the township scale, optimization and adjustment of agricultural structure, etc.
The advent of the era of big data has brought great changes to accounting work, and vocational colleges and universities, as the main place for cultivating application-oriented new business talents, need to change the way of talent training in time in the face of this change. By describing the impact of the era of big data on the demand for new business talents, this paper analyzes the analysis of the training of new business and scientific and technological talents in vocational colleges and universities in the era of big data from the perspectives of talent training target positioning, professional curriculum setting and teacher quality, accurately locates the talent training goals of new business professional groups in vocational colleges, scientifically sets up the curriculum system, and comprehensively improves the teaching staff.
The increase in energy consumption is closely linked to environmental pollution. Healthcare spending has increased significantly in recent years in all countries, especially after the pandemic. The link between healthcare spending, greenhouse gas emissions and gross domestic product has led many researchers to use modelling techniques to assess this relationship. For this purpose, this paper analyzes the relationship between per capita healthcare expenditure, per capita gross domestic product and per capita greenhouse gas emissions in the 27 EU countries for the period 2000 to 2020 using Error Correction Westerlund, and Westerlund and Edgerton Lagrange Multiplier (LM) bootstrap panel cointegration test. The estimation of model coefficients was carried out using the Augmented Mean Group (AMG) method adopted by Eberhardt and Teal, when there is heterogeneity and cross-sectional dependence in cross-sectional units. In addition, Dumitrescu and Hurlin test has been used to detect causality. The findings of the study showed that in the long run, per capita emissions of greenhouse gases have a negative effect on per capita health expenditure, except from the case of Greece, Lithuania, Luxembourg and Latvia. On the other hand, long-term individual co-integration factors of GDP per capita have a positively strong impact on health expenditure per capita in all EU countries. Finally, Dumitrescu and Urlin’s causality results reveal a significant one-way causality relationship from GDP per capita and CO2 emissions per capita to healthcare expenditure per capita for all EU countries.
Copyright © by EnPress Publisher. All rights reserved.