In this study, the development of rinnenkarren systems is analyzed. During the field studies, 36 rinnenkarren systems were investigated. The width and depth were measured at every 10 cm on the main channels and then shape was calculated to these places (the quotient of channel width and depth). Water flow was performed on artificial rinnenkarren system. A relation was looked for between the density of tributary channels and the average shape of the main channel, between the distance of tributary channels from each other and the shape of a given place of the main channel. The density and total length of the tributary channels on the lower and upper sections of the main channels being narrow at their lower end (11 pieces) and being wide at their lower end (10 pieces) of the rinnenkarren systems were calculated as well as their average proportional distance from the lower end of the main channel. The number of channel hollows was determined on the lower and upper sections of these main channels. It can be stated that the average shape of the main channel calculated to its total length depends on the density of the tributary channels and on the distance of tributary channels from each other. The main channel shape is smaller if less water flows on the floor for a long time because of the small density of the tributary channels and the great distance between the tributary channels. In this case, the channel deepens, but it does not widen. The width of the main channel depends on the number and location of the rivulets developing on channel-free relief. The main channel becomes narrow towards its lower end if the tributary rivulets are denser and longer on the upper part of the main rivulet developing on the channel-free, plain terrain and their distance is larger compared to the lower end. The channel hollows develop mainly at those places where the later developing tributary channels are hanging above the floor of the main channel. Thus, the former ones are younger than the latter ones. It can be stated that the morphology of the main channels (shape, channel hollows, and width changes of the main channel) is determined by the tributary channels (their number, location and age).
Taking the west slope of Cangshan Mountain in Yangbi County, Dali as the research site, on the basis of investigating the local natural geographical conditions, topography and biodiversity status of Cangshan Mountain, the CAP protection action planning method was adopted, and the priority protection objects were determined to be native forest vegetation, rare and endangered flora and fauna, alpine vertical ecosystems, hard-leaf evergreen broad-leaved forests and cold-tempered coniferous forests; The main threat factors were commercial collection, tourism development and overgrazing. Biodiversity conservation on the western slope of Cangshan Mountain should take species as “point”, regional boundary as “line”, ecosystem and landscape system as “plane”, so as to realize the overall planning structure system combining “point—line—plane”, which can be divided into conservation core area, buffer zone and experimental area. The results can provide a reference for biodiversity conservation on the western slope of Cangshan Mountain.
In this study, daily averages of air quality parameters were measured in two stations (S1 and S2) of the organized industrial district in Samsun. The meteorological variables were measured at only one station (S1), such as temperature, relative humidity, wind speed, solar radiation, and ambient pressure in 2007, and the daily promised limit for nitrogen dioxide has been especially exceeded at 206 times for 1st station. However, exceeds of the limit value in 2006 for 1st station was reduced by approximately 3.5 times. The daily nitrogen dioxide concentration did not exceed the daily limit of WHO[1] as for 2nd station. The results obtained showed that under the influence of dominant wind direction, the second station measurement results are higher than that of the first station. To determine all of the possible environmental effects, the measurements should be analyzed from a multi-point perspective.
Marine geological maps of the Campania region have been constructed both to a 1:25.000 and to a 1:10.000 scale in the frame of the research projects financed by the Italian National Geological Survey, focusing, in particular, on the Gulf of Naples (Southern Tyrrhenian Sea), a complex volcanic area where volcanic and sedimentary processes strongly interacted during the Late Quaternary and on the Cilento Promontory offshore. In this paper, the examples of the geological sheets n. 464 “Isola di Ischia” and n. 502 “Agropoli” have been studied. The integration of the geological maps with the seismo-stratigraphic setting of the study areas has also been performed based on the realization of interpreted seismic profiles, providing interesting data on the geological setting of the subsurface. The coastal geological sedimentation in the Ischia and Agropoli offshore has been studied in detail. The mapped geological units are represented by: i) the rocky units of the acoustic basement (volcanic and/or sedimentary); ii) the deposits of the littoral environment, including the deposits of submerged beach and the deposits of toe of coastal cliff; iii) the deposits of the inner shelf environment, including the inner shelf deposits and the bioclastic deposits; iv) the deposits of the outer shelf environment, including the clastic deposits and the bioclastic deposits; v) the lowstand system tract; vi) the Pleistocene relict marine units; vii) different volcanic units in Pleistocene age. The seismo-stratigraphic data, coupled with the sedimentological and environmental data provided by the geological maps, provided us with new insights on the geologic evolution of this area during the Late Quaternary.
Taking six typical forest communities in Taizhou Green Heart (ⅰ: Liquidambar formosana + Ulmus pumila + Celtis sinensis; ⅱ: Celtis sinensis + Pterocarya stenoptera + Pinus massoniana; ⅲ: Sapindus mukorossi + Sapium sebiferum + Cupressus funebris; ⅳ: Liquidambar formosana + Acer buergerianum + Cupressus funebris); ⅴ: Celtis sinensis + Ligustrum compactum + Pinus massoniana; ⅵ: Machilus ichangensis + Sapindus mukorossi + Acer buergerianum) as the research objects, 5 indicators: Shannon-Wiener (H), Patrick richness (R1), Margalef species richness (R2), Pielou evenness (J) and ecological dominance (D) were used to analyze species diversity in forest communities. The results showed that: (1) the community was rich in plant resources, with a total of 50 species belonging to 40 genus and 31 families, including 19 species in tree layer, 22 species in shrub layer and only 9 species in herb layer, few plant species; (2) the species richness and diversity index of tree layer and shrub layer were significantly higher than that of herb layer, but there were differences among different communities in the same layer, and no significant difference was reached; (3) the species richness and community diversity of the six communities showed as follows: community VI > community I > community II > community IV > community V > community III.
Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
Copyright © by EnPress Publisher. All rights reserved.