In the governance mechanism of how to develop agricultural cooperatives in rural revitalization, incentive mechanisms are the most important part. The village work team mobilizes the supervisory initiative of employees through a good incentive mechanism, combining their goals with the organizational goals, and promoting the development of the team. Based on the theory of herd effect and the motivation mechanism of "Zhizhi Shuangfu", combined with case analysis, this article points out the problems of single incentive form, insufficient attraction of incentive methods, and insufficient skill training for members in the incentive mechanism of YS Agricultural Products Professional Cooperative. In response to these issues, corresponding improvement suggestions were proposed: developing multiple incentive mechanisms, establishing special reward mechanisms, and strengthening technical training for cooperative members.
This research paper explores the influence of first-order chemical reactions on the sustainable properties of electrically conducting magnetohydrodynamic (MHD) fluids in a vertical channel with the unique characteristics of Jeffrey fluid flow. The mathematical model of MHD flow with Jeffrey fluid and chemical reaction incorporates the impacts of viscous dissipation, Joule heating, and a non-Newtonian fluid model with viscoelastic properties in the flow regions. The governing equations of the flow field were solved using the finite difference method, and the impacts of flow parameters on the flow characteristics were discussed numerically using a graphical representation. It’s revealed that increasing the Jeffrey parameter results in a decline in the velocity field profiles. Also, species concentration field profiles decline with higher values of the destruction chemical reaction parameter. The findings of this study have significant implications for various engineering applications, including energy generation, aerospace engineering, and material processing. Additionally, the inclusion of Jeffrey’s fluid flow introduces a viscoelastic component, enhancing the complexity of the fluid dynamics.
Currently, coal resource-based cities (CRBCs) are facing challenges such as ecological destruction, resource exhaustion, and disordered urban development. By analyzing the landscape pattern, the understanding of urban land use can be clarified, and optimization strategies can be proposed for urban transformation and sustainable development. In this study, based on the interpretation of remote sensing data for three dates, the landscape pattern changes in the urban area of Huainan City, a typical coal resource-based city in Anhui Province, China were empirically investigated. The results indicate that: (1) There is a significant spatial-temporal transformation of land use, with construction land gradually replacing arable land as the dominant land use type in the region. (2) Landscape indices are helpful to reveal the characteristics of land transfer and distribution of human activities during a process. At the landscape type level, construction land, grassland, and water bodies are increasingly affected by human activities. At the landscape composition level, the number of landscape types increases, and the distribution of different types of patches becomes more balanced. In addition, to address the problems caused by the coal mining subsidence areas in Huainan city, three landscape pattern optimization strategies are proposed at both macro and micro levels. The research findings contribute to a better understanding of land use changes and their driving forces, and offer valuable alternatives for ecological environment optimization.
Copyright © by EnPress Publisher. All rights reserved.