Nowadays, international exchanges are becoming more and more frequent in the world. As a global language, English can establish a communication bridge between different countries and nationalities, and its importance is obvious. Since 2001, China has gradually added English education to the curriculum plan of primary schools in various regions. Later, with the deepening of the industry’s understanding of English teaching, the education reform has also followed up. It can be said that the level of educators and educates is rising spirally. However, there are still many restrictive factors in the current situation of primary school students’ learning English, among which the more prominent factors are the strength of English teachers and the evaluation mechanism for students’ learning achievements.
With the popularization of the Internet and the rapid development of computer network technology, human beings have entered a brand new era - the information age. This kind of network technology beyond space not only brings well-being to people, but also subtly affects the ideas and behaviors of teenagers. It not only changes their lifestyle and values, but also quietly makes them mentally ill, resulting in an endless series of problems of juvenile cybercrimes. For the purpose of promoting the governance of Internet crimes among young people effectively and avoiding crimes among special groups of young people, this paper plans to base on the concept of Internet crimes of teenagers, summarize the characteristics of youth crimes in our country, analyze its influence factors and propose the measures to deal with it.
The mining sector faces a complex dilemma as an economic development agent through social upliftment in places where mining corporations operate. Resource extraction is destructive and non-renewable, making it dirty and unsustainable. To ensure corporate sustainability, this paper examines the effects of knowledge management (KM), organizational learning (OL), and innovation capability (IC) on Indonesian coal mining’s organizational performance (OP). We used factor and path analysis to examine the relationships between the above constructs. After forming a conceptual model, principal component analysis validated the factor structure of a collection of observed variables. Path analysis examined the theories. The hypothesized framework was confirmed, indicating a positive association between constructs. However, due to mining industry peculiarities, IC does not affect organizational performance (OP). This study supports the importance of utilizing people and their relevant skills to improve operational performance. The findings have implications for managers of coal mining enterprises, as they suggest that KM and OL are critical drivers of OP. Managers should focus on creating an environment that facilitates knowledge sharing and learning, as this will help improve their organizations’ performance.
Vehicle detection stands out as a rapidly developing technology today and is further strengthened by deep learning algorithms. This technology is critical in traffic management, automated driving systems, security, urban planning, environmental impacts, transportation, and emergency response applications. Vehicle detection, which is used in many application areas such as monitoring traffic flow, assessing density, increasing security, and vehicle detection in automatic driving systems, makes an effective contribution to a wide range of areas, from urban planning to security measures. Moreover, the integration of this technology represents an important step for the development of smart cities and sustainable urban life. Deep learning models, especially algorithms such as You Only Look Once version 5 (YOLOv5) and You Only Look Once version 8 (YOLOv8), show effective vehicle detection results with satellite image data. According to the comparisons, the precision and recall values of the YOLOv5 model are 1.63% and 2.49% higher, respectively, than the YOLOv8 model. The reason for this difference is that the YOLOv8 model makes more sensitive vehicle detection than the YOLOv5. In the comparison based on the F1 score, the F1 score of YOLOv5 was measured as 0.958, while the F1 score of YOLOv8 was measured as 0.938. Ignoring sensitivity amounts, the increase in F1 score of YOLOv8 compared to YOLOv5 was found to be 0.06%.
Copyright © by EnPress Publisher. All rights reserved.