Increasing water consumption has increased using of synthetic nutritional methods for enriching groundwater resources. Artificial feeding is a method that can save excess water for using in low level water time in underground. The purpose of this study is to evaluate the performance of the flood dispersal and artificial feeding system in the Red Garden of Shahr-e-Daghshan and improving, saving quality of the groundwater table in the area. In order to investigate the performance of these plans, an area of 1570 km2 was considered in the Southern of Shah-Reza. The statistics data from 5 years before the design of the plans (1986-2002) related to flood control fluctuations in 20 observation wells and many indicator Qanat were surveyed in this area. The annual fluctuations in the level of the station show a rise in the level of the station after the depletion of the plan. Dewatering of the first and second turns, with an increase of more than one meter above groundwater level, has had the highest impact on the level of groundwater table in the region. Reduced permeability at sediment levels, wasted flood through evaporation and wasteful exploitation of groundwater resources, cause to loss of the impact on the increase in the level and quality of groundwater in the area, especially in the dry, drought season and recent high droughts.
The cross wire projection welding of wires (Al 5182, = 4 mm) performed using the conventional (i.e. pneumatic) electrode force system was subjected to thorough numerical analysis. Calculations were performed until one of adopted boundary conditions, i.e., maximum welding time, maximum penetration of wires, the occurrence of expulsion or the exceeding of the temperature limit in the contact between the electrode and the welded material was obtained. It was observed that the ring weld was formed within the entire range of welding parameters. The process of welding was subjected to optimisation through the application of a new electromechanical electrode force system and the use of a special hybrid algorithm of electrode force and/or displacement control. Comparative numerical calculations were performed (using SORPAS software) for both electrode force systems. Technological welding tests were performed using inverter welding machines (1 kHz) provided with various electrode force systems. The research also involved the performance of metallographic and strength (peeling) tests as well as measurements of welding process characteristic parameters (welding current and voltage).
The welding process optimisation involving the use of the electromechanical force system and the application of the hybrid algorithm of force control resulted in i) more favourable space distribution of welding power, ii) energy concentration in the central zone of the weld, iii) favourable (desired) melting of the material within the entire weld transcrystallisation zone and iv) obtainment of a full weld nugget.
In recent years, the rapid development of technologies such as virtual reality, augmented reality, and mixed reality, along with the significant increase in publications related to the Metaverse, demonstrates a sustained growth in interest in this field. Some scholars have already performed bibliometric analyses of this emerging field. However, previous analyses have not been comprehensive due to limitations such as the volume of literature, particularly lacking in co-citation analysis, which is crucial for understanding the interconnectedness and impact of research works. In this study, we used the Web of Science as a database to search for topics related to the Metaverse from 1995 to 2023. Subsequently, we employed CiteSpace for co-citation network analysis to supplement previous research. Through our analysis at the journal, author, and literature levels, we identified core journals and key authors in the Metaverse field. We discovered that Extended Reality (XR), education, user privacy, and terminologies related to the Metaverse are significant research themes within the field. This study provides clear and actionable research directions for future papers in the Metaverse field.
The Organic Rankine Cycle (ORC) is an electricity generation system that uses organic fluid instead of water in the low temperature range. The Organic Rankine cycle using zeotropic working fluids has wide application potential. In this study, data mining (DM) model is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) models are used. The MLP model emerged as the most effective approach for predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results closely matched the actual results obtained from the thermodynamic model using Genetron software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal efficiency. This approach empowers engineers with the ability to predict thermal efficiency in organic Rankine systems with high accuracy, speed, and ease.
Introduction: Growth, yield and quality of okra (Abelmoschus esculentus (L.) Moench) are related to fertilizer application, being nitrogen (N) the most outstanding, due to its direct relationship with photosynthesis and vegetative growth of the plant. Objective: The objective was to evaluate the agronomic and productivity characteristics of okra as a function of N dose. Materials and methods: The study was conducted at the experimental area of Campus Gurupi, the Universidad Federal de Tocantins (UFT), Brazil, in two planting periods (autumn/winter and spring/summer). The experimental design used was randomized block design (RBD) with six treatments (50, 100, 150, 150, 200 and 250 kg N ha-1) and four replications. Urea was used as a source of N. The characteristics evaluated were: productivity, average fruit mass, height and plant chlorophyll index. Results: Productivity and plant height were superior in the fall/winter crop. Mean fruit mass and chlorophyll index were not influenced by planting time. For productivity, a linear response was obtained with increasing dose up to the limit of the N dose used (250 kg ha-1), with a mean value higher than 14 t of fruit. Mean mass and plant height responded linearly to increasing N dose. Nitrogen affected the chlorophyll index, with maximum values of 45.96 and 47.19, observed in the two evaluation periods. Conclusion: Planting time and N content in the soil interacted with plant height, being favorable in the period without precipitation. N influenced all the characteristics, demonstrating the importance of nitrogen fertilization in the development of okra plants.
Copyright © by EnPress Publisher. All rights reserved.