In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spatial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is providing a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and made the flash drought analysis and monitoring become possible.
Magnetic graphene oxide nanocomposites (M-GO) were successfully synthesized by partial reduction co-precipitation method and used for removal of Sr(II) and Cs(I) ions from aqueous solutions. The structures and properties of the M-GO was investigated by X-ray diffraction, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer (VSM) and N2-BET measurements. It is found that M-GO has 2.103 mg/g and 142.070 mg/g adsorption capacities for Sr(II) and Cs(I) ions, respectively. The adsorption isotherm matches well with the Freundlich for Sr(II) and Dubinin–Radushkevich model for Cs(I) and kinetic analysis suggests that the adsorption process is pseudo-second-ordered.
In many cases, the expected efficiency advantages of public-private partnership (PPP) projects as a specific form of infrastructure provision did not materialize ex post. From a Public Choice perspective, one simple explanation for many of the problems surrounded by the governance of PPPs is that the public decision-makers being involved in the process of initiating and implementing PPP projects (namely, politicians and public bureaucrats) in many situations make low- cost decisions in the sense of Kirchgässner (1948–2017). That is, their decisions may have a high impact on the wealth of the jurisdiction in which the PPP is located (most notably, on the welfare of citizen-taxpayers in this jurisdiction) but, at the same time, these decisions often only have a low impact on the private welfare of the individual decision-makers in politics and bureaucracy. The latter, for example, in many settings often have a low economic incentive to monitor/control what the private-sector partners are doing (or not doing) within a PPP arrangement. The purpose of this paper is to draw greater attention to the problems created by low-cost decisions for the governance of PPPs. Moreover, the paper discusses potential remedies arising from the viewpoint of Public Choice and Constitutional Political Economy.
In this study, the effect of porogenic solvents on pore size distribution of the polycaprolactone (PCL) thin films was investigated. Five thin PCL films were prepared using the solvent-casting method. Chloroform, Methylene Chloride (MC) and three different compositions of MC/ Dimethylformamide (DMF) (80/20, 50/50 and 20/80) were used as solvents. Scanning Electron Microscopy (SEM) investigations were employed to study morphology and consequently the pore size distribution of the prepared films. The PCL films made by chloroform and MC as a solvent were completely non-porous. Whereas the other films (made by a combination of MC and DMF) showed both uni-modal and bi-modal pore size distributions.
Chinese municipalities have developed a large stock of capital assets during a period of rapid growth and urbanization, but have yet to modernize asset management practices. Cities face challenges such as premature decline of fixed assets and spiking liabilities related to operating and maintaining assets. This paper evaluates the asset management practices in three selected small cities and towns in China, using a benchmarking assessment tool followed by an in-depth field assessment. The paper finds that overall performance is below half the international benchmark for good practice in all three cities. Management practices are considerably more advanced for land than for buildings and infrastructure. Key deficiencies in data availability and reporting, governance, capacity, and financial management indicate increased risks for local government finance and the delivery of public services. For small cities and towns where public revenues are often uncertain and limited, urban public services will be at risk of deterioration unless good asset management practices are put in place. The paper recommends strategic actions for upper and lower levels of government, to advance local asset management practices and facilitate the reform agenda.
Copyright © by EnPress Publisher. All rights reserved.