Dredging and reclamation operations are pivotal aspects of coastal engineering and land development. Within these tasks lie potential hazards for personnel operating dredging machinery and working within reclamation zones. Due to the specialized nature of the work environment, which deviates from conventional workplace settings, the risk of workplace accidents is significantly heightened. The aim of this study is to conduct a comprehensive risk analysis of the safety aspects related to dredging and reclamation activities, with the goal of enhancing safety and minimizing the frequency and severity of potential dangers. This research comprises a thorough risk analysis, integrating meticulous hazard identification from sample projects and literature reviews. It involves risk assessment by gathering insights from experts with direct working experience and aims to assess potential risks. The study focuses on defining effective risk management strategies, exemplified through a case study of a nearshore construction project in Thailand. The study identified numerous high and very high-risk factors in the assessment and analysis of occupational safety in dredging and reclamation work. Consequently, a targeted response was implemented to control and mitigate these risks to an acceptable level. The outcome of this study will provide a significant contribution to the advancement of guidelines and best practices for improving the safety of dredging and reclamation operations.
Providing and using energy efficiently is hampered by concerns about the environment and the unpredictability of fossil fuel prices and quantities. To address these issues, energy planning is a crucial tool. The aim of the study was to prioritize renewable energy options for use in Mae Sariang’s microgrid using an analytical hierarchy process (AHP) to produce electricity. A prioritization exercise involved the use of questionnaire surveys to involve five expert groups with varying backgrounds in Thailand’s renewable energy sector. We looked at five primary criteria. The following four combinations were suggested: (1) Grid + Battery Energy Storage System (BESS); (2) Grid + BESS + Solar Photovoltaic (PV); (3) Grid + Diesel Generator (DG) + PV; and (4) Grid + DG + Hydro + PV. To meet demand for electricity, each option has the capacity to produce at least 6 MW of power. The findings indicated that production (24.7%) is the most significant criterion, closely followed by economics (24.2%), technology (18.5%), social and environmental (18.1%), and structure (14.5%). Option II is strongly advised in terms of economic and structural criteria, while option I has a considerable advantage in terms of production criteria and the impact on society and the environment. The preferences of options I, IV, and III were ranked, with option II being the most preferred choice out of the four.
Participation in the implementation of green values that are becoming a global norm often experiences challenges. In response with trends of social media use, a study of barriers to green product purchase intention among social media users is conducted. By descriptive qualitative approach, three keywords are employed, namely: (1) “barriers to green consumption”; (2) “barriers of purchase intention; and (3) “social media use and barriers to green consumption”. The findings reveal: (1) the study of barriers to green product purchase intention among social media users has been gaining importance for future research; (2) the potential future research area includes: (a) the level of belief in green products purchase intention that explains the rationalization of green consumption (green knowledge); and (b) the use of digital media through the role of social media in promoting green consumption (green promotion). The theoretical implication emphasizes contribution to the theory of sustainable marketing, namely barriers as dynamics of market interactivity that are capable of generating responsiveness leading to business competitiveness. While practical implication is shown in business efforts to transform challenges into opportunity.
This study aims to explore the asymmetric impact of renewable energy on the sectoral output of the Indian economy by analyzing the time series data from 1971 to 2019. The nonlinear autoregressive distributed lag approach (NARDL) is employed to examine the short- and long-run relationships between the variables. Most studies focus on economic growth, ignoring sectoral dynamics. The result shows that the sectoral output shows a differential dynamism with respect to the type of energy source. For instance, agricultural output responds positively to the positive shock in renewable energy, whereas industry and service output behave otherwise. Since the latter sectors depend heavily on non-renewable energy sources, they behave positively towards them. Especially, electricity produced from non-renewable energy sources significantly influences service sector output. However, growing evidence across the world is portraying the strong relationship between the growth of renewable energy sources and economic growth. However sectoral dynamism is crucial to frame specific policies. In this regard, the present paper’s result indicates that policies related to promoting renewable energy sources will significantly influence sectoral output in the long run in India.
The present work conducts a comprehensive thermodynamic analysis of a 150 MWe Integrated Gasification Combined Cycle (IGCC) using Indian coal as the fuel source. The plant layout is modelled and simulated using the “Cycle-Tempo” software. In this study, an innovative approach is employed where the gasifier's bed material is heated by circulating hot water through pipes submerged within the bed. The analysis reveals that increasing the external heat supplied to the gasifier enhances the hydrogen (H2) content in the syngas, improving both its heating value and cold gas efficiency. Additionally, this increase in external heat favourably impacts the Steam-Methane reforming reaction, boosting the H2/CH4 ratio. The thermodynamic results show that the plant achieves an energy efficiency of 44.17% and an exergy efficiency of 40.43%. The study also identifies the condenser as the primary source of energy loss, while the combustor experiences the greatest exergy loss.
The obtaining of new data on the transformation of parent materials into soil and on soil as a set of essential properties is provided on the basis of previously conducted fundamental studies of soils formed on loess-like loams in Belarus (15,000 numerical indicators). The study objects are autochthonous soils of uniform granulometric texture. The basic properties without which soils cannot exist are comprehensively considered. Interpolation of factual materials is given, highlighting the essential properties of soils. Soil formation is analyzed as a natural phenomenon depending on the life activity of biota and the water regime. Models for differentiation of the chemical profile and bioenergy potential of soils are presented. The results of the represented study interpret the available materials taking into account publications on the biology and water regime of soils over the past 50 years into three issues: the difference between soil and soil-like bodies; the soil formation as a natural phenomenon of the mobilization of soil biota from the energy of the sun, the atmosphere, and the destruction of minerals in the parent materials; and the essence of soil as a solid phase and as an ecosystem. The novelty of the article study is determined by the consideration of the priority of microorganisms and water regime in soil formation, chemical-analytical identification of types of water regime, and determination of the water regime as a marker of soil genesis.
Copyright © by EnPress Publisher. All rights reserved.