In order to explore the influence of the ferroelectric surface on the structure and properties of semiconductor oxides, the growth of CdS nanocrystals was regulated and controlled by taking single-crystal perovskite PbTiO3 nanosheets as the substrate through a simple hydrothermal method. Through composition design, a series of PbTiO3-CdS nanocomposite materials with different loading concentrations were prepared, and their microstructure and photocatalytic properties were systematically analyzed. Studies show that in the prepared product, CdS nanoparticles selectively grow on the surfaces of PbTiO3 nanosheets, and their morphology is affected by the exposed surfaces of PbTiO3 nanosheets. There is a clear interface between the PbTiO3 substrate and CdS nanoparticles. The concentration of the initial reactant and the time of hydrothermal reaction also significantly affect the crystal morphology of CdS. Photocatalysis studies have shown that the prepared PbTiO3-CdS nanocomposite material has a significant degradation effect on 10 mg/L of Rhodamine B aqueous solution. The degradation efficiency rises with the increase of CdS loading concentration. When degrading 10 mg/L Rhodamine B aqueous solution, the PbTiO3-CdS sample with a mass fraction of 3% can reach a degradation rate of 72% within 120 min.
Magnesium hydroxide/melamine phosphate borate (nano MH/MPB), a novel nano-composition intumescent flame retardant, was synthesized with the in-situ reaction method from MgCl2·6H2O sodium hydroxide (NaOH) and melamine phosphate borate (MPB) in the absence of H2O. The structure of the product was confirmed by EDAX IR and XRD. The effects of reaction temperature and time on the dimension of magnesium hydroxide were observed. The effects of mass ratio of magnesium hydroxide to MPB on the flame retardancy of nano-MH/MPB/EP were examined with the limiting oxygen test. The results show that the optimal condition of synthesis of MH/MPB is mMH/mMPB = 0.25, reacting under 75 ℃ for 30 minutes. Finally, the mechanism for flame retardancy of nano-MH/MPB/EP was pilot studied by means of IR of char layer and TG of MH/MPB.
The porous carbon/Ni nanoparticle composite was prepared by a freeze-drying method using NaCl as the template. It was applied in the effect of the concentration, adsorption time, and temperature of adsorption on the adsorption behavior. The kinetic model and the adsorption isothermic fitting results show that the adsorption behavior fits with the pseudo-secondary dynamics and the Langmuir isothermal model, indicating that the adsorption process is monolayer adsorption. Thermodynamic results indicate that the adsorption process is spontaneous physicochemical adsorption. The fitting showed that the porous carbon/Ni nanoparticle composites reach 217.17 mg·g-1, at 313 K indicates good adsorption for Congo red.
Space is a product of society. Driven by industrialization, urbanization, informatization and government policies, China’s rural space is undergoing drastic reconstruction. As one of the core contents of international rural geography research, rural space research are multi-disciplinary, multi perspective, multi-dimensional and multi-method, forming a rich research field. In order to comprehensively grasp the progress of rural space research abroad, this study reviewed international rural space research literature in recent 40 years. The study found that foreign scholars described the connotation of rural space from the aspects of material, imagination and practice, emphasize the importance of daily life practice. It introduced living space to construct a more systematic research framework of rural space by establishing a “three-fold model of rural space”. With regard to the theoretical perspective, international research on rural space has experienced three stages: functionalism, political economics and social constructivism. In the evolution of time, it has realized the transformation from productivism to post-productivism; in the spatial dimension, it realizes the multiple superposition of settlement space, economic space, social space and cultural space. As a whole, international research on rural space has realized the transformation from material level to social representation, from objective space to subjective space, and from static one-dimensional space to dynamic multi-dimensional space, which enlightens us on the importance of interdisciplinary research and “social cultural” research on rural space. The construction of rural space in China needs to pay attention to the subject status of farmers and multifunction of rural space, respect the role of locality and difference of various places, and recover the function of production of meaning of rural space.
The rare earth mining area in South China is the main production base of ionic rare earth in the world, which has brought inestimable economic value to the local area and even the whole nation. However, due to the lack of mining technology and excessive pursuit for economic profits, a series of environmental problems have arisen, which is a great threat to the ecosystem of the mining area. Taking Lingbei rare earth mining area in Ganzhou as an example, this paper discriminated and analyzed such aspects as the ecological source, ecological corridor and ecological nodes of the mining area based on the landscape ecological security pattern theory and the minimum cumulative resistance model (MCR) method, and constructed a landscape ecological security pattern of the mining area during the 2009, 2013 and 2018. The results show that: i) The patch area of the ecological source of rare earth mining area is small, mainly concentrated in the east and west sides of the mining area. ii) During the selected year, the ecological source area, ecological corridors, radiation channels and the number of ecological nodes in the rare earth mining area are increasing, indicating that the landscape ecological security of the rare earth mining area has been improved to some extent, but it remains necessary for relevant departments to make a optimized planning to further reconstruct the ecological security pattern of the rare earth mining area.
Copyright © by EnPress Publisher. All rights reserved.