This study investigates the significance of data analytics in digital marketing for sustainable business growth. Data analytics has become an indispensable instrument in the world of digital marketing, offering organisations the means to achieve sustainable growth while minimising their environmental impact. We gathered data from 273 marketing and business consultants, chosen for their expertise in digital channels and data analytics, using a survey research design. The questionnaire, which was validated through expert review and pilot testing, assessed the relationship between data analytics utilization and its impact on competitive advantage and business optimization. We conducted statistical analyses, including descriptive and inferential statistics, using SPSS version 25.0. Findings reveal a significant correlation between data analytics adoption in digital marketing and sustainable business competitive advantage, as well as a notable impact on business optimization. Recommendations emphasise the strategic importance of customer segmentation and predictive analytics in leveraging data analytics for targeted marketing campaigns and proactive adjustments to market trends. This study underscores the indispensability of data analytics in the evolving digital marketing landscape, offering actionable insights for businesses seeking sustainable growth and competitive advantage.
The increase in world carbon emissions is always in line with national economic growth programs, which create negative environmental externalities. To understand the effectiveness of related factors in mitigating CO2 emissions, this study investigates the intricate relationship among macro-pillars such as economic growth, foreign investment, trade and finance, energy, and renewable energy with CO2 emissions of the high gross domestic product economies in East Asia Pacific, such as China, Japan, Korea, Australia and Indonesia (EAP-5). Through the application of the Vector Error Correction Model (VECM), this research reveals the long-term equilibrium and short-term dynamics between CO2 emissions and selected factors from 1991 to 2020. The long-term cointegration vector test results show that economic growth and foreign investment contribute to carbon reduction. Meanwhile, the short-term Granger causality test shows that economic growth has a two-way causality towards carbon emissions, while energy consumption and renewable energy consumption have a one-way causality towards carbon emissions. In contrast, the variables trade, foreign direct investment, and domestic credit to the private sector do not have two-way causality towards CO2 emissions. The findings reveal that economic growth and foreign investment play significant roles in carbon reduction, which are observed in long-term causality relationships, while energy consumption and renewable energy are notable factors. Thus, the study offers implications for mitigating environmental concerns on national economic growth agendas by scrutinizing and examining the efficacy of related factors.
This study aims to compare investment in human capital, equality of gender education in Kuwait before and after adopting SDG 4 and SDG 5 in 2015. It also aims to assess the effect of women’s empowerment on economic growth. To achieve this objective, published data on the State of Kuwait were collected from the World Bank DataBank between 1992 and 2022 and from the Central Bank of Kuwait. The study employed autoregressive distributed lag (ARDL) to determine the impact of women’s empowerment on economic development. The analysis results revealed that the State of Kuwait provided high-quality education for both genders. The results also showed that women are more educated than men. However, this was not reflected in the role of women in the country’s politics, as their participation in parliament and government is still limited. Similarly, women’s participation in business and economic activities is still limited. Finally, the results of the ARDL test showed that women’s education and their political, business, and economic empowerment affect economic development in the short and long run.
Bali is the most famous tourist destination in the world, and this popularity has led to a significant rise in the island’s economy. The rise in income has also driven an increase in demand for infrastructure. Moreover, the Bali regional competitiveness index, in the infrastructure pillar, shows a lower figure compared to the national level. So that the Bali Provincial Government focuses on building an infrastructure strategy. This research uses the Input-Output Table (IOT) model, namely the 2016 Bali Province IOT which will be released in 2021. This analysis was chosen because IOT assumes that one sector can be an input for other sectors, in terms of this this is the construction sector. With investment in strategic and monumental infrastructure marking the New Era of Bali, it will result in additional Gross Regional Domestic Product (GRDP) of IDR 18.7 trillion, or in other words Bali’s GRDP will increase by 9.71% from the condition of no investment. This shows that infrastructure development is able to boost Bali’s economy. Further research is needed to be able to qualitatively analyze development infrastructure strategies in Bali. Remembering that a qualitative approach is also important to be able to analyze in depth.
India’s economic growth is of significant interest due to its expanding Gross Domestic Product (GDP) and global market influence. This study investigates the interplay between production, trade, carbon dioxide (CO2) emissions, and economic growth in India using Granger causality analysis. Also, the data from 1994 to 2023 were analyzed to explore the relationships among these variables. The results reveal strong positive correlations among production, trade, CO2 emissions, and GDP, with production showing significant associations with export, import, and GDP. Co-integration tests confirm the presence of a long-term relationship among the variables, suggesting their interconnectedness in shaping India’s economic landscape. Regression analysis indicates that production, export, import, United States (US)-India trade, manufacturing cost of energy, and CO2 emissions significantly impact GDP. Moreover, the Vector Error Correction Model (VECM) estimation reveals both short-term and long-term dynamics, highlighting the importance of understanding equilibrium and deviations in economic variables. Overall, this study contributes to a better understanding of the complex interactions driving India’s economic growth and sustainability.
Copyright © by EnPress Publisher. All rights reserved.