The danger of riverbed processes is considered. Their speed varies from the first few months of the flood to the most dynamic process in nature. It happened in front of people. This may make life on the river bank and the utilization of river resources more difficult. This paper introduces the causes and consequences of the danger performance of riverbed processes, and focuses on the mapping methods of the danger assessment of riverbed processes: determining the danger degree of riverbed processes and different methods of displaying it on the map. An example of displaying danger on the previously drawn map is given, and the distribution of different types and expression degrees of dangerous riverbed processes under various natural conditions in Russia is briefly analyzed.
In order to optimize the environmental factors for cucumber growth, a fertilizer and water control system was designed based on the Internet of Things (IoT) system. The IoT system monitors environmental factors such as temperature, light and soil Ec value, and uses image processing to obtain four growth indicators such as cucumber stem height, stem diameter size, number of leaves and number of fruit set to establish a single growth indicator model for temperature, light, soil Ec value and growth stage, and the four growth indicators were fused to obtain the comprehensive growth indicator Ic for cucumber, and calculates its deviation to determine the cucumber growth status. Based on the integrated growth index Ic of cucumber, a soil Ec control model was established to provide the optimal environment and fertilizer ration for cucumber at different growth stages to achieve stable and high yield of cucumber.
Through the combination of the geographic information systems (GIS) and the integrated information model, the stability of regional bank slope was comprehensively evaluated. First, a regional bank slope stability evaluation index system was established through studying seven selected factors (slope grade, slope direction, mountain shadow, elevation, stratigraphic lithology, geological structure and river action) that have an impact on the stability of the slope. Then, each factor was rasterized by GIS. According to the integrated information model, the evaluation index distribution map based on rasterized factors was obtained to evaluate the stability of the regional bank slope. Through the analysis of an actual project, it was concluded that the geological structure and stratigraphic lithology have a significant impact on the evaluation results. Most of the research areas were in the relatively low stable areas. The low and the relatively low stable areas accounted for 15.2% and 51.5% of the total study area respectively. The accuracy of slope evaluation results in the study area reached 95.41%.
There are several factors that generate postharvest losses of Citrus sinensis, but none have been focused on the central jungle of the Junín region of Peru. The objective of this research was to evaluate postharvest losses of Citrus sinensis in the province of Satipo, Junín region of Peru, considering the stages of the production chain. The methodology was applied to descriptive and cross-sectional design. A sample of 10 orange trees, 3 transport intermediaries and 5 traders selected for compliance with minimum volume and quality requirements were used. The °Brix, pH and acidity characteristics of the fruit were determined. Subsequently, absolute and percentage losses were quantified through direct observation, surveys and interviews. The main postharvest losses of Citrus sinensis were 1.50% in harvesting and detaching, 1.75% in transport to the collection center, 2.23% in storage and transport by intermediaries, and 2.90% in storage and sale by retailers. The overall loss was 8.12% throughout the production chain and US$5.75 per MT of C. sinensis harvested. The main damages found were mechanical and biological, caused by poor harvesting and packaging techniques, precarious storage and careless transport of the merchandise.
In order to evaluate the temporal changes in tree diversity of forest vegetation in Xishuangbanna, Yunnan Province, the study collected tree diversity data from four main forest vegetation in the region through a quadrat survey including tropical rainforest (TRF), tropical coniferous forest (COF), tropical lower mountain evergreen broad-leaved forest (TEBF), tropical seasonal moist forest (TSMF). We extracted the distribution of four forest vegetation in the region in four periods of 1992, 2000, 2009, and 2016 in combination with remote sensing images, using simp son Shannon Wiener and scaling species diversity indexes compare to the differences of tree evenness of four forest vegetation and use the scaling ecological diversity index and grey correlation evaluation model to evaluate the temporal changes of forest tree diversity in the region in four periods. The results show that: (1) The proportion of forest area has a trend of decreasing first and then increasing, which is shown by the reduction from 65.5% in 1992 to 53.42% in 2000, to 52.49% in 2009, and then to 54.73% in 2016. However, the tropical rainforest shows a continuous decreasing trend. (2) There are obvious differences in the contributions of the four kinds of forest vegetation to tree diversity. The order of evenness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > warm coniferous forest > tropical seasonal humid forest, and the order of richness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm coniferous forest, The order of contribution to tree diversity in tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm tropical coniferous forest. (3) The tree diversity of tropical rainforests and tropical seasonal humid forests showed a continuous decreasing trend. The tree diversity of forest vegetation in Xishuangbanna in four periods was 1992 > 2009 > 2016 > 2000. The above results show that economic activities are an important factor affecting the biodivesity of Xishuangbanna, and the protection of tropical rainforest is of great significance to maintain the biodiversity of the region.
Copyright © by EnPress Publisher. All rights reserved.