Surveys are one of the most important tasks to be executed to get valued information. One of the main problems is how the data about many different persons can be processed to give good information about their environment. Modelling environments through Artificial Neural Networks (ANNs) is highly common because ANN’s are excellent to model predictable environments using a set of data. ANN’s are good in dealing with sets of data with some noise, but they are fundamentally surjective mathematical functions, and they aren’t able to give different results for the same input. So, if an ANN is trained using data where samples with the same input configuration has different outputs, which can be the case of survey data, it can be a major problem for the success of modelling the environment. The environment used to demonstrate the study is a strategic environment that is used to predict the impact of the applied strategies to an organization financial result, but the conclusions are not limited to this type of environment. Therefore, is necessary to adjust, eliminate invalid and inconsistent data. This permits one to maximize the probability of success and precision in modeling the desired environment. This study demonstrates, describes and evaluates each step of a process to prepare data for use, to improve the performance and precision of the ANNs used to obtain the model. This is, to improve the model quality. As a result of the studied process, it is possible to see a significant improvement both in the possibility of building a model as in its accuracy.
This paper focuses on the analysis of educational institutions’ communication on social media, with an emphasis on the individual type of content used by these institutions to increase engagement and interaction with current and potential students. The authors examine how educational institutions tailor their communication content on Facebook and Instagram to meet the expectations and needs of their target audience. The analysis includes content evaluation, frequency of posts, user interaction, and integration of multimedia elements. In our research we focused on private school segment from kindergartens, through primary to secondary schools. The paper also presents an analysis of the differences of communication on different platforms (Facebook and Instagram) and their impact on the digital communication strategy of private schools. The results suggest that despite the increasing popularity of Instagram and higher interaction, educational institutions are communicating more on Facebook.
Accurate drug-drug interaction (DDI) prediction is essential to prevent adverse effects, especially with the increased use of multiple medications during the COVID-19 pandemic. Traditional machine learning methods often miss the complex relationships necessary for effective DDI prediction. This study introduces a deep learning-based classification framework to assess adverse effects from interactions between Fluvoxamine and Curcumin. Our model integrates a wide range of drug-related data (e.g., molecular structures, targets, side effects) and synthesizes them into high-level features through a specialized deep neural network (DNN). This approach significantly outperforms traditional classifiers in accuracy, precision, recall, and F1-score. Additionally, our framework enables real-time DDI monitoring, which is particularly valuable in COVID-19 patient care. The model’s success in accurately predicting adverse effects demonstrates the potential of deep learning to enhance drug safety and support personalized medicine, paving the way for safer, data-driven treatment strategies.
The purpose of Vehicular Ad Hoc Network (VANET) is to provide users with better information services through effective communication. For this purpose, IEEE 802.11p proposes a protocol standard based on enhanced distributed channel access (EDCA) contention. In this standard, the backoff algorithm randomly adopts a lower bound of the contention window (CW) that is always fixed at zero. The problem that arises is that in severe network congestion, the backoff process will choose a smaller value to start backoff, thereby increasing conflicts and congestion. The objective of this paper is to solve this unbalanced backoff interval problem in saturation vehicles and this paper proposes a method that is a deep neural network Q-learning-based channel access algorithm (DQL-CSCA), which adjusts backoff with a deep neural network Q-learning algorithm according to vehicle density. Network simulation is conducted using NS3, the proposed algorithm is compared with the CSCA algorithm. The find is that DQL-CSCA can better reduce EDCA collisions.
While the notion of the smart city has grown in popularity, the backlash against smart urban infrastructure in the context of changing state-public relations has seldom been examined. This article draws on the case of Hong Kong’s smart lampposts to analyse the emergence of networked dissent against smart urban infrastructure during a period of unrest. Deriving insights from critical data studies, dissentworks theory, and relevant work on networked activism, the article illustrates how a smart urban infrastructure was turned into both a source and a target of popular dissent through digital mediation and politicisation. Drawing on an interpretive analysis of qualitative data collected from multiple digital platforms, the analysis explicates the citizen curation of socio-technic counter-imaginaries that constituted a consent of dissent in the digital realm, and the creation and diffusion of networked action repertoires in response to a changing political opportunity structure. In addition to explicating the words and deeds employed in this networked dissent, this article also discusses the technopolitical repercussions of this dissent for the city’s later attempts at data-based urban governance, which have unfolded at the intersections of urban techno-politics and local contentious politics. Moving beyond the common focus on neoliberal governmentality and its limits, this article reveals the underexplored pitfalls of smart urban infrastructure vis-à-vis the shifting socio-political landscape of Hong Kong, particularly in the digital age.
The effective allocation of resources within police patrol departments is crucial for maintaining public safety and operational efficiency. Traditional methods often fail to account for uncertainties and variabilities in police operations, such as fluctuating crime rates and dynamic response requirements. This study introduces a fuzzy multi-state network (FMSN) model to evaluate the reliability of resource allocation in police patrol departments. The model captures the complexities and uncertainties of patrol operations using fuzzy logic, providing a nuanced assessment of system reliability. Virtual data were generated to simulate various patrol scenarios. The model’s performance was analyzed under different configurations and parameter settings. Results show that resource sharing and redundancy significantly enhance system reliability. Sensitivity analysis highlights critical factors affecting reliability, offering valuable insights for optimizing resource management strategies in police organizations. This research provides a robust framework for improving the effectiveness and efficiency of police patrol operations under conditions of uncertainty.
Copyright © by EnPress Publisher. All rights reserved.