The development of critical thinking (CT) enhances academic and professional opportunities. A review of literature reveals the use of fragmented analysis techniques, such as descriptive and correlational methods, among others, which hinder a deeper understanding of CT levels. This research aims to develop a methodology for analyzing Critical Thinking test scores, integrating five phases: exploratory, item analysis, scoring, gap analysis, and correlational. Using a quantitative approach, CT skills were analyzed with the Halpern Critical Thinking Assessment, which includes both open- and closed-ended questions to measure five skills: Verbal Reasoning (VR), Argument Analysis (AA), Hypothesis Testing (HT), Probability Use (PU), and Problem Solving (PS). The sample consisted of 214 students aged 18 and older. The item analysis phase categorized the items into quadrants: satisfactory, for review, or for elimination, based on difficulty and discrimination indices. The gap analysis revealed that Verbal Reasoning and open-ended formats were less satisfactory. The correlational phase, using heat maps, showed a stronger association between Verbal Reasoning and Probability Use. The methodological contributions include a variety of strategies that provide recommended procedures for analyzing tests or questionnaires in general. In today’s digital age, the development of critical thinking is not only a desirable skill but an essential necessity for the higher education system.
The main objective of the study is to discuss the application of a participatory approach that involves the community of a small rural area in Italy to develop and maintain a sustainable local food system based on a very ancient and high-quality typical local bean. The efficacy of the approach in terms of the active involvement of local actors (farming communities, local administration, social associations, and civil society) and knowledge transfer for preserving the local food culture has been demonstrated. Possible improvements to the approach through digital technologies for stimulating the effective engagement of teenagers have also been discussed.
Increasing number of smart cities, the rise of technology and urban population engagement in urban management, and the scarcity of open data for evaluating sustainable urban development determines the necessity of developing new sustainability assessment approaches. This study uses passive crowdsourcing together with the adapted SULPiTER (Sustainable Urban Logistics Planning to Enhance Regional freight transport) methodology to assess the sustainable development of smart cities. The proposed methodology considers economic, environmental, social, transport, communication factors and residents’ satisfaction with the urban environment. The SULPiTER relies on experts in selection of relevant factors and determining their contribution to the value of a sustainability indicator. We propose an alternative approach based on automated data gathering and processing. To implement it, we build an information service around a formal knowledge base that accumulates alternative workflows for estimation of indicators and allows for automatic comparison of alternatives and aggregation of their results. A system architecture was proposed and implemented with the Astana Opinion Mining service as its part that can be adjusted to collect opinions in various impact areas. The findings hold value for early identification of problems, and increasing planning and policies efficiency in sustainable urban development.
The research explores academia and industry experts’ viewpoints regarding the innovative progression of Virtual Reality (VR)-based safety tools customized for technical and vocational education training (TVET) within commercial kitchen contexts. Developing a VR-based safety tools holistic framework is crucial in identifying constructs to mitigate the risks prevalent in commercial kitchens, encompassing physical, chemical, biological, ergonomic, and psychosocial hazards workers encounter. Introducing VR-based safety training represents a proactive strategy to bolster education and training standards, especially given the historically limited attention directed toward workers’ physical and mental well-being in this sector. This study pursues a primary objective: validating a framework for VR-based kitchen safety within TVET’s hospitality programs. In addition to on-site observations, the research conducted semi-structured interviews with 16 participants, including safety training coordinators, food service coordinators, and IT experts. Participants supplemented qualitative insights by completing a 7-Likert scale survey. Utilizing the Fuzzy Delphi technique, seven constructs were delineated. The validation process underscored three pivotal constructs essential for the VR safety framework’s development: VR kitchen design, interactive applications, and hazard identification. These findings significantly affect the hospitality industry’s safety standards and training methodologies within commercial kitchen environments.
Copyright © by EnPress Publisher. All rights reserved.