With the increasing demand for sustainable energy, advanced characterization methods are becoming more and more important in the field of energy materials research. With the help of X-ray imaging technology, we can obtain the morphology, structure and stress change information of energy materials in real time from two-dimensional and three-dimensional perspectives. In addition, with the help of high penetration X-ray and high brightness synchrotron radiation source, in-situ experiments are designed to obtain the qualitative and quantitative change information of samples during the charge and discharge process. In this paper, X-ray imaging technology based on synchrotron and its related applications are reviewed. The applications of several main X-ray imaging technologies in the field of energy materials, including X-ray projection imaging, transmission X-ray microscopy, scanning transmission X-ray microscopy, X-ray fluorescence microscopy and coherent diffraction imaging, are discussed. The application prospects and development directions of X-ray imaging in the future are prospected.
This systematic literature review examines the convergence of entrepreneurship and information technology between 2005 and 2024. It investigates how the emergence of information technologies such as social networks, smart devices, big data, and cloud computing have transformed business operations and entrepreneurial approaches. The study use technologies such as Bibliometrix to analyze academic literature and identify research trends, knowledge structures, and their evolutionary routes. During the specified time frame, a grand total of 292 articles were published by 777 writers. These publications have played a key role in redirecting academic focus from traditional entrepreneurship to the field of digital entrepreneurship and the applications of information technology. A thematic analysis uncovers a shift from theoretical investigation to practical implementations and multidisciplinary research, while a co-citation analysis highlights important contributors and influential works. This study emphasizes the crucial importance of information technology in influencing entrepreneurial behaviors and strategic business decisions. It also offers valuable insights for future research and entrepreneurial practice in the information age.
Tangerang City is characterized by its dense residential, commercial, and industrial activities and strategic proximity to Jakarta. This study aims to evaluate the strategic planning and implementation of innovative city initiatives in Tangerang, Indonesia, focusing on integrating blockchain, Internet of Things (IoT) big data technologies and innovation in urban development. This study has employed explanatory survey data from a structured questionnaire distributed to a diverse Tangerang community sample, including users and non-users of the “Smart City Tangerang Live” application. The survey was conducted for 2-months March to April 2022, included 71 and the sample included individuals across 13 districts, utilizing cluster sampling to ensure representativeness. The findings reveal a positive community response towards the smart city initiatives, with significant Engagement and interaction with the “Tangerang Live” application. However, technology access and usage disparities among different community segments were noted. The study highlights the critical role of intelligent technologies in transforming urban infrastructure and services, improving the quality of life, and fostering sustainable urban development in Tangerang. The implications of this study are multifaceted. For urban planners and policymakers, the results underscore the importance of strategic planning in innovative city development, emphasizing the need for inclusive and accessible technological solutions. The study also suggests potential areas for improvement in community engagement and public awareness campaigns to promote the adoption and efficient use of smart technologies.
The purpose of this study is to explore factors influencing the blockchain adoption in agricultural supply chains, to make a particular focus on how security and privacy considerations, policy support, and management support impact the blockchain adoption intention. it further investigates perceived usefulness as a mediating variable that potentially amplifies the effects of these factors on blockchain adoption intention, and sets perceived cost as a moderating variable to test its influence on the strength and direction of the relationship between perceived usefulness and adoption intention. through embedding the cost-benefit theory into the integrated tam-toe framework and utilizing the partial least squares structural equation modeling (PLS-SEM) method, this study identifies the pivotal factors that drive or impede blockchain adoption in the agricultural supply chains, which fills the gap of the relatively insufficient research on the blockchain adoption in agriculture field. the results further provide empirical evidence and strategic insights that can guide practical implementations, to equip stakeholders or practitioners with the necessary knowledge to navigate the complexities of integrating cutting-edge technologies into traditional agricultural operations, thereby promoting more efficient, transparent, and resilient agricultural supply chains.
We report a method for effectively and homogeneously incorporating carbon nanotubes (CNTs) in the form of double-wall (DWCNTs) and multi-wall (MWCNTs) structures into commercial paints without the use of additives, surfactants, or chemical processes. The process involves the physical mixing of the nanotubes and polymers using the cavitation energy of an ultrasonic bath. It is a simple, fast method that allows for uniform distribution of carbon nanotube bundles within the polymer for direct application. Due to the hydrophobic properties of the carbon nanotubes as grown, we used paint samples containing 0.3% by mass of both types of CNTs and observed an improvement in waterproofing through wettability and water absorption through immersion tests on the samples. Different solvents such as water, formaldehyde, and glycerin were used, and the results showed an increase in paint impermeability of 30% and 25% with the introduction of DWCNTs and MWCNTs, respectively. This indicates a promising, economically viable, and revolutionary method for applying nanotechnology in the polymer industry.
Alfalfa is considered the most used forage crop in the world, its main use is for cattle feeding, due to its high nutritional value, specifically in protein and digestible fiber. Currently, the trend in agriculture is to reduce the application of chemicals and among them are fertilizers that pollute soil and water, so the adoption of new technologies and other not so new is becoming a good habit among farmers. Nanotechnology in the plant system allows the development of new fertilizers to improve agricultural productivity and the release of mineral nutrients in nanoforms, which has a wide variety of benefits, including the timing and direct release of nutrients, as well as synchronizing or specifying the environmental response. Biofertilizers are important components of integrated nutrient management and play a key role in soil productivity and sustainability. While protecting the environment, they are a cost-effective, environmentally friendly and renewable source of plant nutrients to supplement chemical fertilizers in the sustainable agricultural system. Nanotechnology and biofertilization allow in a practical way the reduction in the application of chemicals, contributing to the sustainability of agriculture, so this work aims to review the relevant results on biofertilization, the use of nanotechnology and the evaluation of the nutritional composition of alfalfa when grown with the application of biofertilizers.
Copyright © by EnPress Publisher. All rights reserved.