Total factor productivity (TFP) is essential for disentangling the determinants of economic growth, productivity, and the standard of living. Understanding the variations in TFP, however, is greatly challenging because of the many assumptions that comprise the theoretical growth framework. In this paper, we aim to explore the determinants of TFP growth for countries at different stages of information and communication technology (ICT) development. To address the endogenous nature of the associated growth variables, we implement a three-stage-least (3SLS) square panel regression to improve the efficiency and asymptomatic accuracy of the estimators. We find that transmission channels, such as financial openness and trade globalization, have contributed substantially to growth in both advanced and developing countries. However, we also discover that greater financial openness can undermine a country’s TFP growth if the financial system is not sufficiently developed. When time horizons are decomposed into pre-ICT development and post-ICT development periods, a significant crowding-out effect is observed between ICT investment and financial openness in the pre-period, implying that the allocation of resources is critical for countries in the developing stage. Trade and finance policies that are adopted by advanced and developed countries might not be ideal for underdeveloped countries. Discretion in choosing adequate policies regarding financial integration and trade liberalization is advised for these emerging countries.
An investigation is conducted into how radiation affects the non-Newtonian second-grade fluid in double-diffusive convection over a stretching sheet. When fluid is flowing through a porous material, the Lorentz force and viscous dissipation are also taken into account. The flow equations are coupled partial differential equations that can be solved by MATLAB’s built-in bvp4c algorithm after being transformed into ODEs using appropriate similarity transformations. Utilizing graphs and tables, the impact of a flow parameter on a fluid is displayed. On velocity, temperature, and concentration profiles, the effects of the magnetic field, Eckert number, and Schmidt number have been visually represented. Calculate their inaccuracy by comparing the Nusselt number and Sherwood number values to those from earlier investigations.
The gravure printing process is widely utilized for large-scale, high-quality, multi-colored printing tasks executed at high press speeds. This includes a diverse range of products such as art books, greeting cards, currency, stamps, wallpaper, magazines, and more. This thesis addresses the fire risks associated with gravure printing, acknowledging the use of highly flammable materials and the potential for static charge-related incidents. Despite its prevalence, there is limited research on fire prevention and control in gravure printing. The study employs field observations, stakeholder interviews, and an extensive review of literature on fire risk and control in printing press operations in India. It analyzes the causes of fires using the fire triangle model, emphasizing the role of heat, combustible materials, and oxygen in fire incidents within the printing press environment. The thesis categorizes preventive measures into fire prevention and fire suppression actions, focusing on reducing fire load, static charge mitigation, and implementing firefighting systems. It observes that poor housekeeping, lack of awareness, and inadequate emergency control plans contribute significantly to fire hazards in press facilities. Additionally, the research identifies key factors such as high press temperatures, low humidity, improper storage, and inadequacies in firefighting systems as potential causes of fires. It emphasizes the need for optimal environmental conditions, proper storage practices, and effective firefighting infrastructure within press facilities. The study concludes with comprehensive guidelines for loss prevention and control, including management programs, housekeeping, operator training, pre-emergency planning, preventive maintenance, and plant security. It also addresses safety measures specific to gravure printing presses, such as automatic sprinkler systems, fire hydrant system, carbon dioxide flooding systems, and portable fire extinguishers. In summary, this thesis provides valuable insights into the multifaceted nature of fire risks in gravure printing presses and recommends a holistic approach for effective fire prevention and control.
Fruits are a source of vitamins. Mango is one of the abundantly nutritional fruits. Vitamin B9, or folic acid, is one of the important vital amines due to its role in preventing neural deficiency. Several beneficial micro-organisms are used for the synthesis of folic acid. In this study, Lactobacillus acidophilus, Leuconostoc mesenteroides, Streptococcus thermophilus, and Saccharomyces cerevisiae were used. Saccharomyces cerevisiae synthesized folic acid as compared to other organisms. There were five different concentrations of mango pulp that were analyzed for folic acid synthesis (5%, 10%, 15%, 20%, and 30%). The initial concentration of pulp was 133.37 mg kg−1, but after fermentation with four micro-organisms it got reduced. As compared to the other three organisms, Saccharomyces cerevisiae synthesizes 17.15 mg kg−1, 30.14 mg kg−1, 28.62 mg kg−1, 21.70 mg kg−1, and 21.78 mg kg−1, respectively, at different pulp concentrations of 5%, 10%, 15, 20%, and 30%. Vitamin C increased to 320 mg as compared to the control, and there was no significant difference between the four micro-organisms. Antioxidants also showed positive results at different concentrations of pulp. There was an increase in titratable acidity and a decrease in pH recorded for the 24 h fermentation period. In this variety, the color of mango pulp slightly changes to yellow shades due to the breakdown of pigments, so this effects the *b value in between the pulp concentrations. Data supports the enrichment of folic acid, which will further support the utilization of beneficial micro-organisms in food beverages.
For centuries, stem cuttings harvested from sexually mature trees have been recognized to be more difficult to root than those from juvenile shoots. This has been poorly understood and attributed to a combination of ontogenetic and physiological ageing. The recent suggestion that micro-RNA may play a key role in phase change has stimulated a re-examination of some old data that identified pre-severance light x nutrient interactions affecting the rooting ability of stem cuttings. This was linked to vigorous growth and active photosynthesis without constraint from accumulated starch. Support for the prime importance of physiological factors was also obtained when seeking to induce physiological youth in the crowns of ontogenetically mature trees by the induction of roots within the tree crown. Meanwhile, at the other end of the phase change spectrum, floral initiation occurred when the opposite set of environmental conditions prevailed so that growth was stunted, and carbohydrates accumulated in leaves and stems. A re-examination of this literature suggests that rooting ability is driven at the level of an individual leaf and internode emerging from the terminal bud affecting both morphological and physiological activity. In contrast, flowering occurs when internode elongation and assimilate mobilization were hindered. It is therefore suggested that the concepts of juvenility and ageing are not relevant to vegetative propagation and should instead be replaced by physiological and morphological ‘fitness’ to root.
Copyright © by EnPress Publisher. All rights reserved.