The issue of virtue and happiness holds a crucial position in both Chinese traditional and Western philosophical systems, and to this day, it remains a hot topic of concern and discussion. The "Huainanzi" was written during the early Western Han Dynasty, mainly based on Taoist thoughts, incorporating various schools of thought to form its distinct theoretical system. It can be seen as a culmination of the traditional Chinese pre-Qin perspective on "virtue and happiness" holding significant research value. "Huainanzi" firmly believes that the ideal situation between virtue and happiness is and must be a consistent relationship.
Taking domestic single-player game brands as the research object, this paper discusses the value and strategy of single-player game brands expanding IP operation. It is found that single-player game brands expanding IP operation can improve brand awareness and influence, increase player stickiness and loyalty, and extend product life cycle and market vitality. In order to help single-player game brands expand IP operations, this paper puts forward four suggestions, such as creating core stories, hoping to provide some reference and inspiration for the development of domestic single-player game brands.
We studied the role of industry-academic collaboration (IAC) in the enhancement of educational opportunities and outcomes under the digital driven Industry 4.0 using research and development, the patenting of products/knowledge, curriculum development, and artificial intelligence as proxies for IAC. Relevant conceptual, theoretical, and empirical literature were reviewed to provide a background for this research. The investigator used mainly principal (primary) data from a sample of 230 respondents. The primary statistics were acquired through a questionnaire. The statistics were evaluated using the structural equation model (SEM) and Stata version 13.0 as the statistical software. The findings indicate that the direct total effect of Artificial intelligence (Aint) on educational opportunities (EduOp) is substantial (Coef. 0.2519916) and statistically significant (p < 0.05), implying that changes in Aint have a pronounced influence on EduOp. Additionally, considering the indirect effects through intermediate variables, Research and Development (Res_dev) and Product Patenting (Patenting) play crucial roles, exhibiting significant indirect effects on EduOp. Res_dev exhibits a negative indirect effect (Coef = −0.009969, p = 0.000) suggesting that increased research and development may dampen the impact of Aint on EduOp against a priori expectation while Patenting has a positive indirect effect (Coef = 0.146621, p = 0.000), indicating that innovation, as reflected by patenting, amplifies the effect of Aint on EduOp. Notably, Curriculum development (Curr_dev) demonstrates a remarkable positive indirect effect (Coef = 0.8079605, p = 0.000) underscoring the strong role of current development activities in enhancing the influence of Aint on EduOp. The study contributes to knowledge on the effective deployment of artificial intelligence, which has been shown to enhance educational opportunities and outcomes under the digital driven Industry 4.0 in the study area.
In 2015, the newly built undergraduate colleges have accounted for half of the ordinary undergraduate colleges. Through the investigation, it is concluded that the newly built undergraduate colleges in Sichuan have the following commonalities in the transformation: the school positioning of "application-oriented"; The embodiment of the new university spirit of "serving local construction"; The talent training goal of "innovative and composite applied talents"; Flexible personnel training curriculum system.
Recognizing the discipline category of the abstract text is of great significance for automatic text recommendation and knowledge mining. Therefore, this study obtained the abstract text of social science and natural science in the Web of Science 2010-2020, and used the machine learning model SVM and deep learning model TextCNN and SCI-BERT models constructed a discipline classification model. It was found that the SCI-BERT model had the best performance. The precision, recall, and F1 were 86.54%, 86.89%, and 86.71%, respectively, and the F1 is 6.61% and 4.05% higher than SVM and TextCNN. The construction of this model can effectively identify the discipline categories of abstracts, and provide effective support for automatic indexing of subjects.
Corporate finance courses are increasingly adopting data-driven teaching methods. Modern corporate finance courses are focusing more on students' career development. Through simulation practice and career planning guidance, students are better prepared to face challenges in the workplace after graduation. Students need to learn how to utilize data analysis tools and techniques to extract useful information from large datasets and make more accurate decisions. Data-driven teaching is a significant innovation in current curriculum reforms. In recent years, with the development of technology and the emergence of financial innovation, corporate finance courses have been undergoing continuous changes and innovations. These courses have started to emphasize emerging areas such as digital finance, blockchain technology, and sustainable development. Taking the example of corporate finance, this paper integrates the demands of skill development in the era of digital finance, focusing on aspects like teaching methods, reform methodologies, practical experiments, feedback mechanisms, and data analysis.
Copyright © by EnPress Publisher. All rights reserved.