This study evaluated the efficiency and productivity of the manufacturing industries of Singapore. Singapore is one of the world’s most competitive countries and manufacturing giants. All 21 manufacturing industries as classified by Singapore’s Department of Statistics were included in the study as decision-making units (DMUs). Using the Malmquist DEA on data spanning 2015–2021, we found that excerpt for the Paper and Paper product industry, all industries recorded positive total factor productivity (TFP). TFP ranged from 0.977 to 1.481. In terms of technical efficiency, 14 out of 21 industries showed positive efficiency change. The highest TFP was recorded in 2020 and the lowest in 2016. By measuring and improving efficiency, industries in Singapore can achieve cost savings, increase output, and enhance their competitiveness in the global marketplace. In addition, efficiency measurement can help policymakers identify potential areas for improvement and develop targeted policies to promote sustainable economic growth. Given these benefits, performance measurement is inevitable for industries and policymakers in Singapore to achieve economic objectives. Manufacturing industries need to find ways to manage the size and scale of operations as we flag this as an area for improvement.
This study systematically examines the literature of electric vehicle (EV) purchase intention and consumer behavior using a bibliometric method to unveil three main research questions: 1) identifying influential publications, authors, and journals; 2) analyzing the thematic evolution of research over time; and 3) identifying emerging research directions. The main objective is to provide a comprehensive understanding of the current state of knowledge and to guide future research in this evolving field. A comprehensive bibliometric analysis was conducted, using Scopus statistics analysis, R-Studio Biblioshiny and VOSviewer, comprising 687 publications authored by 1743 researchers representing 34 different countries with the dataset sourced from the Scopus database from 2010 to 2023. To achieve a nuanced understanding of the research landscape, a multifaceted approach was adopted, including detailed citation analysis, author co-citation analysis, keyword analysis, and thematic mapping. Through meticulous analysis, this study identifies the most influential publications, authors, and journals in the domain of EV purchase intentions and consumer behaviors. It also traces the evolution of themes over time and identifies emerging research directions, providing valuable insights into the trajectory and future avenues of inquiry within this field. The findings contribute to a deeper understanding of the dynamics shaping research in the realm of EVs. The insights gained contribute significantly to advancing knowledge in this crucial domain, offering theoretical insights and practical implications for policymakers, businesses, manufacturers, and academics.
Real estate appraisal standards provide guidelines for the preparation of reliable valuations. These standards emphasize the central role of market data collection in market-oriented valuation methodologies such as the Market Comparison Approach (MCA), which is the most commonly used. The objective of this study is to highlight the difficulties in data finding, as well as the gap between the standards and the actual appraisal practices in Italy. Thus, a detailed comparison was made between the real estate data considered necessary by the standards and those ones reasonably detectable by appraisers, showing that some important market information is not reachable due to legal, technical and economic factors. Finally, a case study is presented in which the actual appraisal of a residential property is schematically described to support what is claimed with the research question and thus the degree of uncertainty around an estimate judgment.
The Huaiyang Canal, a significant section of the Grand Canal, boasts representative tourist attractions. This study analysis of online reviews from Ctrip and Mahive using R language, Gephi, ROST CM, and SPSS has provided insights into tourists’ perceptions of the Huaiyang Canal’s image. Key findings include: (1) Dominant landscape images encompass gardens, canals, and buildings, emphasizing the historical and cultural assets. Both cultural and natural landscapes equally captivate tourists. (2) The canal’s tourism image perception follows a “garden-history-canal” hierarchy with the canal as the central space and history expanding its tourism features. (3) The perceptions can be categorized into historical and cultural landscapes, man-made projects, and attraction perception. Despite varying tourist numbers in Huaian and Yangzhou, scenic spot experiences are similar. The overall perception of tourists is largely positive, but some express concerns about service attitudes and travel time planning.
The cars industry has undergone significant technological advancements, with data analytics and artificial intelligence (AI) reshaping its operations. This study aims to examine the revolutionary influence of artificial intelligence and data analytics on the cars sector, particularly in terms of supporting sustainable business practices and enhancing profitability. Technology-organization-environment model and the triple bottom line technique were both used in this study to estimate the influence of technological factors, organizational factors, and environmental factors on social, environmental (planet), and economic. The data for this research was collected through a structured questionnaire containing closed questions. A total of 327 participants responded to the questionnaire from different professionals in the cars sector. The study was conducted in the cars industry, where the problem of the study revolved around addressing artificial intelligence in its various aspects and how it can affect sustainable business practices and firms’ profitability. The study highlights that the cars industry sector can be transformed significantly by using AI and data analytics within the TOE framework and with a focus on triple bottom line (TBL) outputs. However, in order to fully benefit from these advantages, new technologies need to be implemented while maintaining moral and legal standards and continuously developing them. This approach has the potential to guide the cars industry towards a future that is environmentally friendly, economically feasible, and socially responsible. The paper’s primary contribution is to assist professionals in the industry in strategically utilizing Artificial Intelligence and data analytics to advance and transform the industry.
Relational database models offer a pathway for the storage, standardization, and analysis of factors influencing national sports development. While existing research delves into the factors linked with sporting success, there remains an unexplored avenue for the design of databases that seamlessly integrate quantitative analyses of these factors. This study aims to design a relational database to store and analyse quantitative sport development data by employing information technology tools. The database design was carried out in three phases: (i) exploratory study for context analysis, identification, and delimitation of the data scope; (ii) data extraction from primary sources and cataloguing; (iii) database design to allow an integrated analysis of different dimensions and production of quantitative indicators. An entity-relationship diagram and an entity-relationship model were built to organize and store information relating to sports, organizations, people, investments, venues, facilities, materials, events, and sports results, enabling the sharing of data across tables and avoiding redundancies. This strategy demonstrated potential for future knowledge advancement by including the establishment of perpetual data updates through coding and web scraping. This, in turn, empowers the continuous evaluation and vigilance of organizational performance metrics and sports development policies, aligning seamlessly with the journal’s focus on cutting-edge methodologies in the realm of digital technology.
Copyright © by EnPress Publisher. All rights reserved.