Focused Assessment with Sonography for Trauma (FAST) has been widely used and studied in blunt and penetrating trauma for the past 3 decades. Prior to FAST, invasive procedures such as diagnostic peritoneal lavage and exploratory laparotomy were commonly used to diagnose intra-abdominal injuries. Today, the FAST examination has evolved into a more comprehensive study of the abdomen, heart, thorax, inferior vena cava, among others, with many variations in technique, protocols and interpretation. Trauma management strategies such as laparotomy, endoscopy, computed tomography angiography, angiographic intervention, serial imaging and clinical observation have also changed over the years. This technique, at times, has managed to replace computed tomography and peritoneal lavage diagnosis, without producing delays in the surgical procedure. As such, the relationship between the patient’s clinical information and the results of the exam should be guided to guide therapeutic approaches in difficult to access settings such as intensive care units in war zones, rural or remote locations where other imaging methods are not available. This review will discuss the evolution of the FAST exam to its current status and evaluate its evolving role in the acute management of the trauma patient.
The structure and diversity of tree species in a temperate forest in northwestern Mexico was characterized. Nine sampling sites of 50 × 50 m (2,500 m2) were established, and a census of all tree species was carried out. Each individual was measured for total height and diameter at breast height. The importance value index (IVI) was obtained, calculated from the variable abundance, dominance and frequency. The diversity and richness indices were also calculated. A total of 12 species, four genera and four families were recorded. The forest has a density of 575.11 individuals and a basal area of 23.54/m2. The species of Pinus cooperi had the highest IVI (79.05%), and the Shannon index of 1.74.
The CO2 heat pump air conditioning system of new energy vehicle is designed, and the vehicle model of CO2 heat pump module and heat management system is established based on KULI simulation. The effects of refrigerant charge, running time and compressor speed on the heat pump air conditioning system is studied, and the energy consumption is compared with the PTC heating system and the CO2 heat pump air conditioning system without waste heat recovery. The results show that the optimal charge for full-service operation is 750 g; increasing the compressor speed can increase the cooling capacity, so that the refrigerant temperature in the passenger compartment and battery inlet can quickly reach the appropriate temperature, but the COP<sub>h</sub>, COP<sub>c</sub> are reduced by 2.5% and 1.8% respectively. By comparing it with PTC heating and CO2 heat pump air conditioning systems without waste heat recovery, it is found that the energy consumption of this system is only for the PTC heating systems 42.5%, without waste heat recovery carbon dioxide heat pump air conditioning system of 86.6%. It greatly saves energy, but also increased the waste heat recovery function, so that the system supply air temperature increased by 26%, improve passenger cabin comfort. This provides a reference for the future experimental research of CO2 heat pump air conditioning and heat management system.
In this study, the influence of sewage sludge ash (SSA) waste particle contents on the mechanical properties and interlaminar fracture toughness for mode I and mode II delamination of S-glass fiber-reinforced epoxy composites was investigated. Composite laminate specimens for tensile, flexural double-cantilever beam (DCB), and end-notched fracture (ENF) tests were prepared and tested according to ASTM standards with 5, 10, 15, and 20 wt% SSA-filled S-glass/epoxy composites. Property improvement reasons were explained based on optical and scanning electron microscopy. The highest improvement in tensile and flexural strength was obtained with a 10 wt% content of SSA. The highest mode I and mode II interlaminar fracture toughness’s were obtained with 15 wt% content of SSA. The mode I and mode II interlaminar fracture toughness improved by 33% and 63.6%, respectively, compared to the composite without SSA.
Investment growth in many emerging market and developing economies (EMDEs) has slowed sharply since 2010. Investment growth performance has varied significantly across different regions, however. This paper examines the evolution of investment growth in six EMDE regions, documents remaining investment needs, especially for infrastructure, and presents a set of region-specific policy responses to address these needs. It reports three main findings. First, investment growth has been particularly weak in EMDE regions hosting a large number of commodity exporters. In regions with a substantial number of commodity-importing economies, investment growth has been somewhat resilient but has also declined steadily since 2010. Second, sizable investment needs remain in most EMDE regions to make room for expanding economic activity and rapid urbanization. A large portion of these investment needs is in infrastructure and human capital. Finally, while specific policy priorities vary across regions, several policy options to address remaining investment needs apply universally. These include more, and more efficient, public investment and measures to improve overall growth prospects and the business climate. Improved project selection and monitoring, as well as better governance, may enhance the efficiency and benefits from public investment.
Copyright © by EnPress Publisher. All rights reserved.