The financial services industry is experiencing a swift adoption of artificial intelligence (AI) and machine learning for a variety of applications. These technologies can be employed by both public and private sector entities to ensure adherence to regulatory requirements, monitor activities, evaluate data accuracy, and identify instances of fraudulent behavior. The utilization of artificial intelligence (AI) and machine learning (ML) has the potential to provide novel and unforeseen manifestations of interconnectivity within financial markets and institutions. This can be represented by the adoption of previously disparate data sources by diverse institutions. The researchers employed convenience sampling as the sampling method. The form was filled out over the period spanning from July 2023 to February 2024, and it was designed to be both anonymous and accessible through online and offline platforms. To assess the reliability and validity of the measurement scales and evaluate the structural model, we employed Partial Least Squares (PLS) for model validation. Specifically, we have used the software package Smart-PLS 3 with a bootstrapping of 5000 samples to estimate the significance of the parameters. The results indicate a positive and direct connection between artificial intelligence (AI) and either financial services or financial institutions. On the contrary, machine learning (ML) exhibits a strong and positive association among financial services and financial institutions. Similarly, there exists a positive and direct connection between AI and investors, as well as between ML and investors.
In June 2023, the European Union (EU) enacted the Regulation on Deforestation-Free Products (EUDR), which requires agricultural products to enter and leave its territory free from deforestation. The regulations apply to seven commodities: cattle, cocoa, coffee, oil palm, rubber, soya, wood, and their derivate products grown or raised on land subject to deforestation or forest degradation will be banned from entering the EU market. EUDR will have a significant impact on Vietnam’s Exports of Agricultural Products. Coffee, rubber, wood, and wood products are the main industries in Vietnam affected by this regulation, as the country exports a substantial portion of these products to EU markets. This article examines the impacts of the European Union Deforestation Regulation on Vietnam’s coffee supply chains, discusses possible unintended effects on coffee farmers and farming households, and explores strategies to mitigate these negative impacts while highlighting specific challenges that may arise. The results of this study contribute to a better understanding and management of Vietnam’s agricultural exports, particularly in the coffee sector. Additionally, the article gives some recommendations for improving Vietnam’s laws and policies on deforestation-free products.
In the current digital age, financial development has seen substantial shifts, particularly in buying and selling activities that are now facilitated by digital technology or electronic transactions (e-commerce), which offer convenience at relatively low costs. However, micro, small, and medium enterprises (MSMEs), which play a crucial role in the economy, must adapt to these advancements to sustain and grow their businesses. Despite the widespread adoption of e-commerce, many MSMEs have yet to fully capitalize on this technology. Limited knowledge often leads to hesitation in embracing e-commerce opportunities. Consequently, this study seeks to explore how innovation, information management, and e-commerce adoption impact MSME performance and its implications for business sustainability. The research targets MSME owners and managers in the Jabodetabek area (Jakarta, Bogor, Depok, Tangerang, and Bekasi) and nearby regions, with a sample of 420 individuals selected through random sampling. Data was collected through an online survey (Google Forms) administered to MSME management. The survey items were tested for validity and reliability, and the data analysis was conducted using various regression analyses with SEM-PLS and Smart-PLS3. The study’s findings highlight the following key points: 1) E-commerce adoption significantly enhances information management, which supports MSME sustainability; 2) E-commerce adoption also improves performance through better information management, further promoting MSME sustainability; 3) While technology is important, e-commerce adoption is the primary factor driving MSME sustainability, with technology serving as a secondary factor.
This paper presents a quantitative exploration of the functionality of cost accounting systems and their determinants in social welfare organizations. We conducted a questionnaire survey of managers of social welfare organizations running special nursing homes for the elderly and conducted a cluster analysis based on the data collected. The questionnaire was created based on the scales used in previous studies, with some new scales developed. For data analysis, the statistical analysis environment R was used. The clValid package of R was used to assess the validity of the cluster analysis. Based on the results of the analysis in this paper, it is expected that social welfare organizations that pursue cost leadership strategies and have a strong public interest orientation will benefit greatly by being able to utilize a highly functional cost accounting system. Such organizations will be able to improve their business efficiency by utilizing cost information, and their social contribution activities based on the resulting resources will truly be a contribution to public welfare. The findings from this study are of practical significance because they can be used by business managers of social welfare organizations to review the functionality of their cost accounting systems. We also focus on the degree to which nonprofit organizations focus on social contribution activities (in this paper, we call this public interest orientation). The public interest orientation of an organization is thought to affect the functionality of the cost accounting system in the same way as the organization’s strategy, but there has not been enough quantitative research on this point. By focusing on the public interest orientation of social welfare organizations, this study contributes to deepening our knowledge in this area.
The construction of researcher profiles is crucial for modern research management and talent assessment. Given the decentralized nature of researcher information and evaluation challenges, we propose a profile system for Chinese researchers based on unsupervised machine learning and algorithms. This system builds comprehensive profiles based on researchers’ basic and behavior information dimensions. It employs Selenium and Web Crawler for real-time data retrieval from academic platforms, utilizes TF-IDF and BERT for expertise recognition, DTM for academic dynamics, and K-means clustering for profiling. The experimental results demonstrate that these methods are capable of more accurately mining the academic expertise of researchers and performing domain clustering scoring, thereby providing a scientific basis for the selection and academic evaluation of research talents. This interactive analysis system aims to provide an intuitive platform for profile construction and analysis.
This research presents a bibliometric review of scientific production on the social and economic factors that influence mortality from tuberculosis between the years 2000 and 2024. The analysis covered 1742 documents from 848 sources, revealing an annual growth of 6% in scientific production with a notable increase starting in 2010, reaching a peak in 2021. This increase reflects growing concern about socioeconomic inequalities affecting tuberculosis mortality, exacerbated in part by the COVID-19 pandemic. The main authors identified in the study include Naghavi, Basu and Hay, whose works have had a significant impact on the field. The most prominent journals in the dissemination of this research are Plos One, International Journal of Tuberculosis and Lung Disease and The Lancet. The countries with the greatest scientific production include the United States, the United Kingdom, India and South Africa, highlighting a strong international contribution and a global approach to the problem. The semantic development of the research shows a concentration on terms such as “mortality rate”, “risk factors” and “public health”, with a thematic map highlighting driving themes such as “socioeconomic factors” and “developing countries”. The theoretical evolution reflects a growing interest in economic and social aspects to gender contexts and associated diseases. This study provides a comprehensive view of current scientific knowledge, identifying key trends and emerging areas for future research.
Copyright © by EnPress Publisher. All rights reserved.