Six Sigma is an organized and systematic method for strategic process improvement that relies on statistical and scientific methods to reduce the defect rates and achieve significant quality up-gradation. Six Sigma is also a business philosophy to improve customer satisfaction, a tool for eliminating process variation and errors and a metric of world class companies allowing for process comparisons. Six Sigma is one of the most effective advanced improvement strategies which has direct impact on operational excellence of an organization. Six Sigma may also be defined as the powerful business strategies, which have helped to improve quality initiatives in many industries around the world. With the use of Six Sigma in casting industries, rejection rate is reduced, customer satisfaction is improved and financial benefits also increased. Six Sigma management uses statistical process control to relentlessly and rigorously pursue the reduction of variation in all critical processes to achieve continuous and breakthrough improvements that impact the bottom-line and/or top-line of the organization and increase customer satisfaction. In this paper author reviewed some of the significant previous published papers and focused on the general overview of publication in casting industries.
This review provided a detailed overview of the different synthesis and characterization methods of polymeric nanoparticles. Nanoparticles are defined as solid and colloidal particles of macromolecular substances ranging in size under 100 nm. Different types of nanoparticles are used in many biological fields (bio-sensing, biological separation, molecular imaging, anticancer therapy, etc.). The new features and functions provided by nano dimensions are largely different from their bulk forms. High volume/surface ratio, improved resolution and multifunctional capability make these materials gain many new features.
In recent years, the foundry sector has been showing an increased interest in reclamation of used sands. Grain shape, sieve analysis, chemical and thermal characteristics must be uniform while molding the sand for better casting characteristics. The problem that tackled by every foundry industry is that of processing an adequate supply of sand which has the properties to meet many requirements imposed upon while molding and core making. Recently, fluidized bed combustors are becoming core of ‘clean wastes technology’ due to their efficient and clean burning of sand. For proven energy efficient sand reclamation processing, analysis of heating system in fluidized bed combustor (FBC) is required. The objective of current study is to design heating element and analysis of heating system by calculation of heat losses and thermal analysis offluidized bed combustorfor improving efficiency.
The regulation of compressor extraction and energy storage can improve the performance of gas turbine energy system. In order to make the gas turbine system match the external load more flexibly and efficiently, a gas turbine cogeneration system with solar energy coupling compressor outlet extraction and energy storage is proposed. By establishing the variable condition mathematical model of air turbine, waste heat boiler and solar collector, we use Thermoflex software to establish the variable condition model of gas turbine compressor outlet extraction, and analyze the variable condition of the coupling system to study the changes of thermal parameters of the system in the energy storage, energy release and operation cycle. Taking the hourly load of a hotel in South China as an example, this paper analyzes the case of the cogeneration system of solar energy coupling compressor outlet extraction and energy storage, and compares it with the benchmark cogeneration system. The results show that taking a typical day as a cycle, the primary energy utilization rate of the system designed in this paper is 3.2% higher than that of the traditional cogeneration system, and the efficiency is 2.4% higher.
This paper uses a new cross-country cross-industry dataset on investment in tangible and intangible assets for 18 European countries and the US. We set out a framework for measuring intangible investment and capital stocks and their effect on output, inputs and total factor productivity. The analysis provides evidence on the diffusion of intangible investment across Europe and the US over the years 2000-2013 and offers growth accounting evidence before and after the Great Recession in 2008-2009. Our major findings are the following. First, tangible investment fell massively during the Great Recession and has hardly recovered, whereas intangible investment has been relatively resilient and recovered fast in the US but lagged behind in the EU. Second, the sources of growth analysis including only national account intangibles (software, R&D, mineral exploration and artistic originals), suggest that capital deepening is the main driver of growth, with tangibles and intangibles accounting for 80% and 20% in the EU while both account for 50% in the US, over 2000-2013. Extending the asset boundary to the intangible assets not included in the national accounts (Corrado, Hulten and Sichel (2005)) makes capital deepening increase. The contribution of tangibles is reduced both in the EU and the US (60% and 40% respectively) while intangibles account for a larger share (40% in EU and 60% in the US). Then, our analysis shows that since the Great Recession, the slowdown in labour productivity growth has been driven by a decline in TFP growth with relatively a minor role for tangible and intangible capital. Finally, we document a significant correlation between stricter employment protection rules and less government investment in R&D, and a lower ratio of intangible to tangible investment.
Copyright © by EnPress Publisher. All rights reserved.