This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
Infectious diseases often occur, especially as diseases such as COVID-19 have claimed many lives in the years between 2019–2021. That’s why it’s called COVID-19, considering that this infectious disease outbreak started in 2019, and its consequences and effects are devastating. Like other countries’ governments, the Indonesian government always announces the latest data on this infectious disease, such as death rates and recoveries. Infectious diseases are transmitted directly through disease carriers to humans through infections such as fungi, bacteria, viruses and parasites. In this research, we offer a contagious illness monitoring application to help the public and government know the zone’s status so that people are more alert when travelling between regions. This application was created based on Web Application Programming Interface (API) data and configured on the Google Map API to determine a person’s or user’s coordinates in a particular zone. We made it using the prototype method to help users understand this application well. This research is part of the Automatic Identification System (AIS) research, where the use of mobile technology is an example of implementation options that can be made to implement this system.
This study aimed to measure the impact of implementing mechanisms of accounting data governance, represented by International Accounting Standards, internal auditing, external auditing, audit committees, disclosure and transparency, and performance evaluation, on the quality of financial reporting data for the commercial banks listed on the Amman Stock Exchange, totaling (15) banks. To achieve the objectives of this study, a descriptive-analytical approach was adopted by developing a questionnaire to collect the primary data measuring the study variables. The questionnaire was distributed to employees in the financial and control departments of these banks, with a total of (375) respondents from the total study population of (733) individuals. Appropriate statistical methods were used to analyze the data, test hypotheses, and the results of this study revealed a strong positive impact of five variables of accounting data governance mechanisms on achieving the quality of financial reporting data. These variables are ranked from highest to lowest in terms of the strength of impact and correlation with the quality of financial reports: disclosure and transparency, external auditing, International Accounting Standards, internal auditing, and audit committees. However, there was no impact of the performance evaluation governance variable on achieving the quality of financial reporting data. These results call on the management of commercial banks in the study to commit to the objective implementation of the requirements of accounting data governance mechanisms as stipulated by international professional assemblies.
The Organic Rankine Cycle (ORC) is an electricity generation system that uses organic fluid instead of water in the low temperature range. The Organic Rankine cycle using zeotropic working fluids has wide application potential. In this study, data mining (DM) model is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) models are used. The MLP model emerged as the most effective approach for predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results closely matched the actual results obtained from the thermodynamic model using Genetron software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal efficiency. This approach empowers engineers with the ability to predict thermal efficiency in organic Rankine systems with high accuracy, speed, and ease.
Copyright © by EnPress Publisher. All rights reserved.