The paper considers an important problem of the successful development of social qualities in an individual using machine learning methods. Social qualities play an important role in forming personal and professional lives, and their development is becoming relevant in modern society. The paper presents an overview of modern research in social psychology and machine learning; besides, it describes the data analysis method to identify factors influencing success in the development of social qualities. By analyzing large amounts of data collected from various sources, the authors of the paper use machine learning algorithms, such as Kohonen maps, decision tree and neural networks, to identify relationships between different variables, including education, environment, personal characteristics, and the development of social skills. Experiments were conducted to analyze the considered datasets, which included the introduction of methods to find dependencies between the input and output parameters. Machine learning introduction to find factors influencing the development of individual social qualities has varying dependence accuracy. The study results could be useful for both practical purposes and further scientific research in social psychology and machine learning. The paper represents an important contribution to understanding the factors that contribute to the successful development of individual social skills and could be useful in the development of programs and interventions in this area. The main objective of the research was to study the functionalities of the machine learning algorithms and various models to predict the students’s success in learning.
The construction industry is responsible for over 40% of global energy consumption and one-third of global greenhouse gas emissions. Generally, 10%–20% of energy is consumed in the manufacturing and transportation stages of materials, construction, maintenance, and demolition. The way the construction industry to deal with these impacts is to intensify sustainable development through green building. The author uses the latest Green Building Certification Standard in Indonesia as the Green Building Guidelines under the Ministry of Public Works and People’s Housing (PUPR) Regulation No. 01/SE/M/2022, as a basis for evaluating existing office buildings or what is often referred to as green retrofit. Structural Equation Modeling-Partial Least Squares (SEM-PLS) is used by the authors to detail the factors influencing the application of green building by analyzing several variables related to the problem studied, which are used to build and test statistical models of causal models. From this study, it is concluded that the most influential factors in the implementation of green retrofitting on office buildings are energy savings, water efficiency, renewable energy use, the presence of green building socialization programs, cost planning, design planning, project feasibility studies, material cost, use of the latest technology applications, and price fluctuations. With the results of this research, there is expected to be shared awareness and concern about implementing green buildings and green offices as an initiative to present a more energy-efficient office environment, save operating costs, and provide comfort to customers.
Based on the research on 31 provincial-level administrative regions at the end of 2022, we used the geographic concentration index, geographic imbalance index, SPSS and ARCGIS spatial analysis techniques to study the spatial distribution, distribution factor correlation, and accessibility of national 5A-level scenic spots. The research results show that the overall distribution of my country's 5A-level scenic spots is unbalanced, with a low degree of concentration, showing a pattern of denseness in the east and sparseness in the west, with large inter-provincial differences. The density of traffic highways is positively correlated with the distribution density of 5A-level scenic spots. The traffic lines in the central and eastern regions are dense, and there are a large number of 5A-level scenic spots, especially the Beijing-Tianjin-Hebei region, the Yangtze River Delta region, and the middle and lower reaches of the Yangtze River and Yellow River. Therefore, the spatial distribution of China's 5A-level tourist attractions is mainly affected by the interaction of economic, transportation and social factors, among which GDP, transportation network and attraction of scenic spots are the most critical factors. These research results can provide a reference for optimizing the spatial layout of China's scenic resources and promoting regional socio-economic development.
This research was conducted with the intention of investigating and analyzing the factors that influence the views that consumers have of advertising on social media platforms. The goal of this study is to look at the many ways that new media ads affect consumers’ purchasing behavior. An evaluation of the validity and reliability of the measures has been carried out with the assistance of confirmatory factor analysis. In addition, the quantitative research approach makes use of both simple random sampling and statistical sampling. The information was gathered via the use of a questionnaire that was issued to fans of new media. Using a Likert scale with five points, the questionnaire’s questions were evaluated to ensure that they were appropriately worded. The total sample size that is employed is 359. The purchase behavior of consumers of new media has been evaluated based on five variables, including the ability to attract attention, provide amusement, establish legitimacy, emphasize creative character qualities, and evoke emotional appeal. The objective of this study paper is to investigate the impact that advertisements broadcast via new media have on consumers’ decision-making processes regarding the acquisition of goods and services. The research’s findings show that when consumers are weighing their options for purchase, advertisements having the largest impact on their purchasing decisions in new media. With the goal of offering important insights into the new media advertising industry, the author seeks to link these results with pertinent ideas from the theoretical framework.
This research aims to determine the factors driving the success of four large cities in Indonesia in implementing Transit-Oriented Development (TOD) infrastructure policies beyond the eight TOD 3.0 Principles. Only a few studies like this have been conducted. The research uses qualitative methods and is supported by in-depth interviews with stakeholders, community leaders, community groups, and service users. The research findings reveal six themes: policy dialogue, organizational structure and coordination, changes in community habits, resources, dissemination and communication, and transportation and connectivity services. The characteristics of the community in the study area that prioritize deliberation are important determinants in policy dialogue and are involved in determining policy formulation. The city government has established a comprehensive organizational and coordination structure for the village and sub-district levels. The Government controls infrastructure development activities, establishes a chain of command and coordination, and encourages people to change their private car usage habits. The city government combines all this with the principle of deliberation and conveys important information to the public. The research highlights the differences in TOD implementation in Indonesia compared to other countries. Specifically, the existence of policy dialogue and the direct involvement of community members influence the level of program policy formulation and are crucial in controlling urban infrastructure development.
Copyright © by EnPress Publisher. All rights reserved.