This work presents the results of the continuity of the research process carried out in the Energy Studies Center belonging to the Faculty of Technical Sciences of the University of Matanzas, which involves the establishment of a dimensionless model to determine the average condensation heat transfer coefficient of Air Coleed Condenser (ACC) systems in straight and inclined tubes. The research consists in obtaining in an analytical way the solution of the differential equation of the velocity profile, considering that condensation is of pellicular type, finally the empirical condition of Roshenow is combined with the theoretical solution to generate a numerical expression that allows obtaining with a 15.2% of deviation in 2,192 tests, a value of the average coefficient of heat transfer by condensation very similar to the one obtained with the use of the most referenced model in the consulted literature, the empirical model of Chato.
The main objective of this article is to analyze the relationship between increases in freight costs and inflation in the markets due to the increases reflected in the prices of the products in some economies in destination ports such as the United States, Europe, Japan, South Africa, the United Arab Emirates, New Zealand and South Korea. We use fractionally integrated methods and Granger causality test to calculate the correlation between these indicators. The results indicate that, after a significant drop in inflation in 2020, probably due to the confinement caused by the pandemic, the increases observed in inflation and freight costs are expected to be transitory given their stationary behavior. We also find a close correlation between both indicators in Europe, the United States and South Africa.
In this paper, we will provide an extensive analysis of how Generative Artificial Intelligence (GenAI) could be applied when handling Supply Chain Management (SCM). The paper focuses on how GenAI is more relevant in industries, and for instance, SCM where it is employed in tasks such as predicting when machines are due for a check-up, man-robot collaboration, and responsiveness. The study aims to answer two main questions: (1) What prospects can be identified when the tools of GenAI are applied in SCM? Secondly, it aims to examine the following question: (2) what difficulties may be encountered when implementing GenAI in SCM? This paper assesses studies published in academic databases and applies a structured analytical framework to explore GenAI technology in SCM. It looks at how GenAI is deployed within SCM and the challenges that have been encountered, in addition to the ethics. Moreover, this paper also discusses the problems that AI can pose once used in SCM, for instance, the quality of data used, and the ethical concerns that come with, the use of AI in SCM. A grasp of the specifics of how GenAI operates as well as how to implement it successfully in the supply chain is essential in assessing the performance of this relatively new technology as well as prognosticating the future of generation AI in supply chain planning.
Copyright © by EnPress Publisher. All rights reserved.