Among contemporary computational techniques, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are favoured because of their capacity to tackle non-linear modelling and complex stochastic datasets. Nondeterministic models involve some computational intricacies when deciphering real-life problems but always yield better outcomes. For the first time, this study utilized the ANN and ANFIS models for modelling power generation/electric power output (EPO) from databases generated in a combined cycle power plant (CCPP). The study presents a comparative study between ANNs and ANFIS to estimate the power output generation of a combined cycle power plant in Turkey. The inputs of the ANN and ANFIS models are ambient temperature (AT), ambient pressure (AP), relative humidity (RH), and exhaust vacuum (V), correlated with electric power output. Several models were developed to achieve the best architecture as the number of hidden neurons varied for the ANNs, while the training process was conducted for the ANFIS model. A comparison of the developed hybrid models was completed using statistical criteria such as the coefficient of determination (R2), mean average error (MAE), and average absolute deviation (AAD). The R2 of 0.945, MAE of 3.001%, and AAD of 3.722% for the ANN model were compared to those of R2 of 0.9499, MAE of 2.843% and AAD of 2.842% for the ANFIS model. Even though both ANN and ANFIS are relevant in estimating and predicting power production, the ANFIS model exhibits higher superiority compared to the ANN model in accurately estimating the EPO of the CCPP located in Turkey and its environment.
This study evaluates the sustainability and ethical practices of Kerry Logistics Network Limited (KLN), a prominent logistics service provider headquartered in Hong Kong. Using normative ethical theories, stakeholder analysis, and the Circle of Sustainability framework, this research examines KLN’s alignment with global sustainability standards, particularly the United Nations Sustainable Development Goals (SDGs). The findings reveal that KLN has achieved significant milestones in environmental management, such as reducing greenhouse gas emissions by 11% from 2021 to 2022 through the deployment of electric trucks and incorporating renewable energy in warehouse operations. KLN has also enhanced social responsibility and governance practices by implementing fair labor policies and establishing a rigorous code of conduct, ensuring compliance with ethical guidelines across its supply chain. However, the study identifies areas for improvement, including biodiversity actions, battery recycling processes, and transparency in stakeholder engagement. Emphasizing the importance of third-party validation, this paper underscores KLN’s leadership in the logistics industry and provides insights for other companies aiming to improve sustainability performance through comprehensive, verifiable practices.
South Korea’s over 3300 islands play vital roles in the nation’s geography, economy, culture, and national security. Despite their importance, these islands face significant challenges, including population decline, aging demographics, and a severe lack of healthcare, childcare, and education facilities. With only 20% of inhabited islands connected to the mainland by bridges, coastal ferries are the primary transportation mode. However, the infrequent ferry services and numerous intermediate stops cause considerable inconvenience. This study conducts an analysis of the coastal ferry route connectivity within the Mokpo Area, focusing on proposing improvements to enhance access to community infrastructure for local island residents. This study analyzes the Mokpo Area’s coastal ferry network, identifying Dochodo as a central hub island to improve connectivity for sustainable island development. By reorganizing routes around Dochodo with larger ferries for main routes and smaller ferries for local trips, the study aims to enhance service access and boost tourism for island communities.
While the notion of the smart city has grown in popularity, the backlash against smart urban infrastructure in the context of changing state-public relations has seldom been examined. This article draws on the case of Hong Kong’s smart lampposts to analyse the emergence of networked dissent against smart urban infrastructure during a period of unrest. Deriving insights from critical data studies, dissentworks theory, and relevant work on networked activism, the article illustrates how a smart urban infrastructure was turned into both a source and a target of popular dissent through digital mediation and politicisation. Drawing on an interpretive analysis of qualitative data collected from multiple digital platforms, the analysis explicates the citizen curation of socio-technic counter-imaginaries that constituted a consent of dissent in the digital realm, and the creation and diffusion of networked action repertoires in response to a changing political opportunity structure. In addition to explicating the words and deeds employed in this networked dissent, this article also discusses the technopolitical repercussions of this dissent for the city’s later attempts at data-based urban governance, which have unfolded at the intersections of urban techno-politics and local contentious politics. Moving beyond the common focus on neoliberal governmentality and its limits, this article reveals the underexplored pitfalls of smart urban infrastructure vis-à-vis the shifting socio-political landscape of Hong Kong, particularly in the digital age.
Copyright © by EnPress Publisher. All rights reserved.