This research delves into the urgent requirement for innovative agricultural methodologies amid growing concerns over sustainable development and food security. By employing machine learning strategies, particularly focusing on non-parametric learning algorithms, we explore the assessment of soil suitability for agricultural use under conditions of drought stress. Through the detailed examination of varied datasets, which include parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new insights into the complexities of predicting soil suitability for crops. Our findings underline the effectiveness of various machine learning models, with the decision tree approach standing out for its accuracy, despite the need for comprehensive data gathering. Moreover, the research emphasizes the promise of merging machine learning techniques with conventional practices in soil science, paving the way for novel contributions to agricultural studies and practical implementations.
Rapid urban expansion gives rise to smart cities which pose immense logistical and supply chain challenges. The COVID-19 pandemic transformed the holistic system identified by Zhao et al. in 2021. The system encompasses logistics and supply chain integral to the concept of smart cities, with a focus on sustainability. This transformation requires an in-depth study on challenges of a common framework of policies for smart cities in countries comprising the Organisation for Economic Cooperation and Development (OECD). The study employs an extensive literature analysis for the period 2020–2022. an approach which contextualizes the model. The model identifies the causes, impact, and spillovers of new trends in logistics and supply, including the sustainability of adopted technologies. The study includes the variables involved, and barriers to creating a shared model. The results reveal that the two elements affecting the supply chain and transport in smart cities are Industry 4.0 and 5.0 technologies supporting specific sectors. The resilience of small and medium-sized enterprises positively impacts the sustainability of large urban centres. The study presents both factors that help and hinder the adoption of environmental, social, and economic sustainability technologies.
The research utilizes a comprehensive dataset from MENA-listed companies, capturing data from 2013 to 2022 to scrutinize the influence of capital structure (CapSt) level on corporate performance across 11 distinct countries. This study analyzed 6870 firm-year observations using a quantitative research method through static and dynamic panel data analysis. The primary analysis reveals a positive correlation between the CapSt ratio and company performance using fixed effects (FE) techniques. Hence, the preliminary results were re-examined and affirmed using a two-step system generalized method of moment (GMM) estimator to address potential endogeneity concerns. This finding aligns with most studies conducted in advanced countries, indicating a positive correlation between CapSt and corporate performance. Furthermore, it is also consistent with some research conducted in less-developed markets. This research argues that, in the MENA region, the advantages of debt, such as tax saving, may outweigh the potential financial distress cost. Furthermore, it offers insights into the monitoring role of CapSt in MENA-listed companies. We strengthen our research results by employing various methodologies and using alternative measures of accounting performance and controlling size, notably panel quantile regression analysis.
This study investigates the influence of Environmental, Social, and Governance Disclosures (ESGD) on the profitability of firms, using a sample of 385 publicly listed companies on the Thai Stock Exchange. Data from 2018 to 2022 is sourced from the Bloomberg database, focusing on ESGD scores as indicators of companies’ ESG commitments. The study utilizes a structural equation model to examine the relationships between independent variables; ESGD, Earnings Per Share (EPS), Debt to Assets ratio (DA), Return on Investment Capital (ROIC), Total Assets (TA), and dependent variables Tobin’s Q (TBQ) and Return on Assets (ROA). The analysis reveals a positive relationship between ESGD and TBQ, but not with ROA. Further exploration is conducted to determine if different ESGD levels (high, medium, low) yield consistent effects on TBQ. The findings indicate discrepancies: high and medium ESGD levels are associated with a negative impact on TBQ when EPS increased, whereas low ESGD levels correlate with an increase in TBQ with rising EPS. This nuanced approach challenges the conventional uniform treatment of ESGD in previous research and provides a deeper understanding of how varying commitments to ESG practices affect a firm’s market valuation and profitability. These insights are crucial for firm management, highlighting the importance of ESGD in relation to other financial variables and their effects on market value. This study offers a new perspective on ESGD’s impact, emphasizing the need for differentiated strategies based on ESG commitment levels.
This study explores the attributes of service quality for overseas residents provided by island county governments, using the example of the Kinmen County Government’s service center in central Taiwan. This research aims to identify key service elements that can enhance the satisfaction of Kinmen overseas residents. Drawing upon the SERVQUAL scale and a comprehensive literature review, service quality is divided into five dimensions: “administrative service,” “life counseling,” “information provision,” among others, comprising 24 service quality elements. A total of 311 valid questionnaires were collected through a survey, and Kano’s two-dimensional quality and IPA analysis were used to classify service factors. The Kano two-dimensional quality analysis revealed that “employment counseling,” “entrepreneurship counseling,” and “setting up service counters at airports and terminals during festivals” belong to attractive quality. Nine elements were classified as “one-dimensional quality” and “must-be quality,” including “one-stop service,” “exclusive consultation hotline,” and “exclusive website reveals information.” Through Quality Function Deployment (QFD), service elements that align with Kano’s two-dimensional quality and IPA priority improvement were selected for detailed study, including “financial assistance in emergencies,” “subsidy for transportation expenses back home,” “subsidies for education allowances,” and “various subsidy application information.” Following expert discussions and questionnaire surveys, eight strategies for improving key service quality elements were identified. This research not only provides actionable insights for the Kinmen County Government but also offers valuable strategies that can be applied to similar contexts globally, where remote and rural populations require specialized governmental support.
This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
Copyright © by EnPress Publisher. All rights reserved.