Heat stress amplified by climate change causes excessive reductions in labor capacity, work injuries, and socio-economic losses. Yet studies of corresponding impact assessments and adaptation developments are insufficient and incapable of effectively dealing with uncertain information. This gap is caused by the inability to resolve complex channels involving climate change, labor relations, and labor productivity. In this paper, an optimization-based productivity restoration modeling framework is developed to bridge the gap and support decision-makers in making informed adaptation plans. The framework integrates a multiple-climate-model ensemble, an empirical relationship between heat stress and labor capacity, and an inexact system costs model to investigate underlying uncertainties associated with climate and management systems. Optimal and reliable decision alternatives can be obtained by communicating uncertain information into the optimization processes and resolving multiple channels. Results show that the increased heat stress will lead to a potential reduction in labor productivity in China. By solving the objective function of the framework, total system costs to restore the reduction are estimated to be up to 248,700 million dollars under a Representative Concentration Pathway of 2.6 (RCP2.6) and 697,073 million dollars under RCP8.5 for standard employment, while less costs found for non-standard employment. However, non-standard employment tends to restore productivity reduction with the minimum system cost by implementing active measures rather than passive measures due to the low labor costs resulting from ambiguities among employment statuses. The situation could result in more heat-related work injuries because employers in non-standard employment can avoid the obligation of providing a safe working environment. Urgent actions are needed to uphold labor productivity with climate change, especially to ensure that employers from non-standard employment fulfill their statutory obligations.
The digitalization of the construction industry is deemed a crucial element in Construction 4.0’s vision, attainable through the implementation of digital twinning. It is perceived as a virtual strategy to surmount the constraints linked with traditional construction projects, thereby augmenting their productivity and effectiveness. However, the neglect to investigate the causal relationship between implementation and construction project management performance has resulted from a lack of understanding and awareness regarding the consequences of digital twinning implementation, combined with a shortage of expertise among construction professionals. Consequently, this paper extensively explores the relationship between digital twinning implementation and construction project management performance. The Innovation Diffusion Theory (IDT) is employed to investigate this relationship, utilizing a quantitative research approach through document analysis and questionnaire surveys. Additionally, partial least squares structural equation modeling (PLS-SEM) with SmartPLS software is employed to deduce the relationship. The results underscore that digital twinning implementation significantly improves construction project management performance. Despite recognizing various challenges in digital twinning implementation, when regarded as moderating factors, these challenges do not significantly impact the established causal relationship. Therefore, this investigation aligns with the national push toward the digitalization of the construction sector, highlighting the positive impacts of digital twinning implementation on construction project management performance. Moreover, this study details the impacts of implementing digital twinning from the construction industry’s perspective, including positive and negative impacts. Afterwards, this paper addresses the existing research gap, providing a more precise understanding and awareness among construction industry participants, particularly in developing nations.
Background: In an increasingly globalized world, public health is a challenge in the future of health systems. Nursing is a fundamental profession in health systems and the purpose of the study is to quantify the scientific production in global public health carried out by nursing to demonstrate its competence, capacity and specialization in this subject. Methods: A bibliometric study was carried out to understand the scientific production of public health nursing in WoS. A total of 17,545 documents were analyzed using Bibliometrix software in version 4.0.5. Results: A notable increase in production is observed over time, a sign of specialization and capacity. The theme focuses on three stages: hygiene and sanitation, infectious diseases and quality, prevention and non-communicable diseases coinciding with the real social needs of each moment. Most of the production is in English and produced by countries with developed economies. Nursing is aligned with current public health needs. Conclusions: Bibliometrics is a good method to quantify scientific production. The results show extensive scientific production in public health nursing, which translates into extensive knowledge of public health by nursing. There is a growth in production in accordance with time as well as an adaptation to the most current themes in accordance with population needs. Public health is an area of concern to countries and nursing can actively participate in studies, planning and leadership of health systems. Public health nursing should not be considered relegated to medicine but independent and of crucial importance to the “Onehealth” concept. Public, private and educational administrations must promote and support nursing research in public health, and it is not advisable to reduce the teaching load of global public health in nursing studies, in favor of the family and community environment.
In the dynamic landscape of modern education, it is essential to understand and recognize the psychological habits that underpin students’ learning processes. These habits play a crucial role in shaping students’ learning outcomes, motivation, and overall educational experiences. This paper shifts the focus towards a more nuanced exploration of these psychological habits in learning, particularly among secondary school students. We propose an innovative assessment model that integrates multimodal data analysis with the quality function deployment theory and the subjective-objective assignment method. This model employs the G-1-entropy value method for an objective evaluation of students’ psychological learning habits. The G-1-entropy method stands out for its comprehensive, objective, and practical approach, offering valuable insights into students’ learning behaviors. By applying this method to assess the psychological aspects of learning, this study contributes to educational research and informs educational reforms. It provides a robust framework for understanding students’ learning habits, thereby aiding in the development of targeted educational strategies. The findings of this study offer strategic directions for educational management, teacher training, and curriculum development. This research not only advances theoretical knowledge in the field of educational psychology but also has practical implications for enhancing the quality of education. It serves as a scientific foundation for educators, administrators, and policymakers in shaping effective educational practices.
To achieve the electrification of private vehicles, it is urgent to develop public charging infrastructure. However, choosing the most beneficial type of public charging infrastructure for the development of a country or region remains challenging. The municipal decision’s implementation requires considering various perspectives. An important aspect of energy development involves effectively integrating and evaluating public charging infrastructure. While car charging facilities have been thoroughly studied, motorcycle charging facilities have been neglected despite motorcycles being a vital mode of transportation in many countries. The study created a hybrid decision-making model to evaluate electric motorcycle charging infrastructure. Firstly, a framework for evaluating electric motorcycle charging infrastructure was effectively constructed through a literature survey and expert experience. Secondly, decision-makers’ opinions were gathered and integrated using Bayesian BWM to reach a group consensus. Thirdly, the performance of the alternative solutions was evaluated by exploring the gaps between them and the aspiration level through modified VIKOR. An empirical analysis was conducted using examples of regions/countries with very high rates of motorcycle ownership worldwide. Finally, comparative and sensitivity analyses were conducted to demonstrate the practicality of the proposed model. The study’s findings will aid in addressing municipal issues and achieving low-carbon development objectives in the area.
Copyright © by EnPress Publisher. All rights reserved.