The proportion of national logistics costs to Gross Domestic Product (NLC/GDP) serve as a valuable indicator for estimating a country’s overall macro-level logistics costs. In some developing nations, policies aimed at reducing the NLC/GDP ratio have been elevated to the national agenda. Nevertheless, there is a paucity of research examining the variables that can determine this ratio. The purpose of this paper is to offer a scientific approach for investigating the primary determinants of the NLC/GDP and to advice policy for the reduction of macro-level logistics costs. This paper presents a systematic framework for identifying the essential criteria for lowering the NLC/GDP score and employs co-integration analysis and error correction models to evaluate the impact of industrial structure, logistics commodity value, and logistics supply scale on NLC/GDP using time series data from 1991 to 2022 in China. The findings suggest that the industrial structure is the primary factor influencing logistics demand and a significant determinant of the value of NLC/GDP. Whether assessing long-term or short-term effects, the industrial structure has a substantial impact on NLC/GDP compared to logistics supply scale and logistics commodity value. The research offers two policy implications: firstly, the goals of reducing NLC/GDP and boosting the logistics industry’s GDP are inherently incompatible; it is not feasible to simultaneously enhance the logistics industry’s GDP and decrease the macro logistics cost. Secondly, if China aims to lower its macro-level logistics costs, it must make corresponding adjustments to its industrial structure.
The use of artificial intelligence (AI) is related to the dynamic development of digital skills. This article focuses on the impact of AI on the work of non-profit organizations that aim to help those around them. Based on 10 semi-structured interviews, it is presented here how it is possible to work with AI and in which areas it can be used—in social marketing, project management, routine bureaucracy. At the same time, workers and volunteers need to be educated in critical and logical thinking more than ever before. These days, AI is becoming more and more present in almost all the activities, bringing several benefits to those making use of it. On the one hand, by using AI in the day-to-day activities, the entities are able to substantially decrease their costs and have the advantage of being able to have, in most cases, a better and faster job done. On the other hand, those individuals that are more creative and more innovative in their line of work should not feel threatened by those situations in which organizations decide to use more AI technologies rather than human beings for the routine activities, since they will get the opportunity to perform tasks that truly require their intellectual capital and decision making abilities.
This financial modelling case study describes the development of the 3-statement financial model for a large-scale transportation infrastructure business dealing with truck (and some rail) modalities. The financial modelling challenges in this area, especially for large-scale transport infrastructure operators, lie in automatically linking the operating activity volumes with the investment volumes. The aim of the paper is to address these challenges: The proposed model has an innovative retirement/reinvestment schedule that automates the estimation of the investment needs for the Business based on the designated age-cohort matrix analysis and controlling for the maximum service ceiling for trucks as well as the possibility of truck retirements due to the reduced scope of tracking operations in the future. The investment schedule thus automated has a few calibrating parameters that help match it to the current stock of trucks/rolling stock in the fleet, making it to be a flexible tool in financial modelling for diverse transport infrastructure enterprises employing truck, bus and/or rail fleets for the carriage of bulk cargo quantifiable by weight (or fare-paying passengers) on a network of set, but modifiable, routes.
Background: Globally, unpaid carers face economic and societal pressures. Unpaid carers’ support is valued at £132 billion a year in the United Kingdom (UK) alone. However, this care comes at a high cost for the carers themselves. Carers providing round the clock care are more than twice as likely to be in bad health than non-carers. These carers are therefore proportionately more likely to need statutory services such as health care provision. It is critical that carers are better supported to be involved in the shaping, delivery and evaluation of the services they receive. Unfortunately, qualitative evidence on how carer organisations can do this better is scarce. Methods: Working collaboratively with a community-based carers organization, we undertook a qualitative study. Purposive sampling was used to recruit 23 participants. Online, semi-structured, one-to-one interviews were conducted with carers, community organization staff and stakeholders to ascertain their experience and views on the involvement service. Results: Firstly, there are a range of benefits resulting from the involvement service. The carers see the service as an opportunity to connect with other carers and share their views and ideas. Secondly, staff and service providers also reported how involvement gave a platform for carers and was of value in helping them shape needs-led services. Thirdly, we found that barriers to good involvement include the lack of a clearly understood, shared definition of involvement as well as the lack of a diverse pool of carer representatives available for involvement activities. Conclusion: The findings from our study provide important insights into how carers, staff and service stakeholders view barriers and enablers to good involvement. The findings will be of interest to a range of community-based organizations interested in further involving members of their community in shaping the services they receive.
In today’s rapidly evolving organizational landscape, understanding the dynamics of employee incentives is crucial for fostering high performance. This research delves into the intricate interplay between moral and financial incentives and their repercussions on employee performance within the dynamic context of healthcare organizations. Drawing upon a comprehensive analysis of 226 respondents from three healthcare organizations in Klang Valley, Peninsular Malaysia, the study employs a quantitative approach to explore the relationships between independent variables (career growth, recognition, decision-making, salary, bonus, promotion) and the dependent variable of employee performance. The research unveils that moral incentives, including career growth, recognition, and decision-making, significantly impact employee performance. Professionals motivated by opportunities for growth, acknowledgment, and participation in decision-making demonstrate heightened engagement and commitment. In the financial realm, competitive salaries, performance-based bonuses, and transparent promotion pathways are identified as crucial factors influencing employee performance. The study advocates a holistic approach, emphasizing the synergistic integration of both moral and financial incentives. Healthcare organizations are encouraged to tailor their incentive structures to create a supportive and rewarding workplace, addressing the multifaceted needs and motivations of healthcare professionals. The implications extend beyond academia, offering practical guidance for organizations seeking to optimize workforce dynamics, foster job satisfaction, and ensure the sustainability of healthcare organizations.
Copyright © by EnPress Publisher. All rights reserved.