With the main idea of cultivating people through the curriculum, this paper explores the organic integration of ideological and political lines and knowledge lines in the teaching design of pharmacology in higher vocational colleges. The medical humanistic literacy contained in the teaching design, explores the path and method of the ideological and political construction of the course, and combines the teaching of professional knowledge and the cultivation of theoretical skills with the cultivation of students’ patriotism, medical professional ethics, life awareness and scientific research spirit. Improve the educational effect of curriculum ideological and political education in college education.
The construction of journalism majors contains rich ideological and political resources. As one of the practical courses, the news interview and writing course is a professional basic course for journalism students. Therefore, for professionals who will undertake journalism in the future, they should not only have the ability to produce and disseminate information, but also shoulder the responsibility of telling Chinese stories, spreading Chinese voices, and delivering Chinese excellent culture. For the teaching of news interview and writing courses, students should be guided in thought, so that they have a sense of home and country, good professional ethics and social responsibility.
With the in-depth development and widespread application of educational informatization, digital education has also become one of the important features of educational modernization. Designing and completing a visual teaching system based on Web technology is of great significance for promoting further reform and development of teaching, especially for achieving remote education, which has great application value. Based on visual teaching needs analysis and B/S architecture, effective system development is achieved through Access database. According to the specific needs of teaching functions, the system can be divided into multiple modules, and the management and login of teaching resources for users can also be smoothly achieved. This has important research value for achieving the goal of remote visualization of teaching.
Projects implemented under life cycle contracts have become increasingly common in recent years to ensure the quality of construction and maintenance of energy infrastructure facilities. A key parameter for energy facility construction projects implemented under life cycle contracts is their duration and deadlines. Therefore, the systematic identification, monitoring, and comprehensive assessment of risks affecting the timing of work on the design and construction is an urgent practical task. The purpose of this work is to study the strength of the influence of various risks on the duration of a project implemented on the terms of a life cycle contract. The use of the expert assessment method allows for identifying the most likely risks for the design and construction phases, as well as determining the ranges of deviations from the baseline indicator. Using the obtained expert evaluations, a model reflecting the range and the most probable duration of the design and construction works under the influence of risk events was built by the Monte-Carlo statistical method. The results obtained allow monitoring and promptly detecting deviations in the actual duration of work from the basic deadlines set in the life cycle contract. This will give an opportunity to accurately respond to emerging risks and build a mutually beneficial relationship between the parties to life cycle contracts.
The challenge of rural electrification has become more challenging today than ever before. Grid-connected and off-grid microgrid systems are playing a very important role in this problem. Examining each component’s ideal size, facility system reactions, and other microgrid analyses, this paper proposes the design and implementation of an off-grid hybrid microgrid in Chittagong and Faridpur with various load dispatch strategies. The hybrid microgrids with a load of 23.31 kW and the following five dispatch algorithms have been optimized: (i) load following, (ii) HOMER predictive, (iii) combined dispatch, (iv) generator order, and (v) cycle charging dispatch approach. The proposed microgrids have been optimized to reduce the net present cost, CO2 emissions, and levelized cost of energy. All five dispatch strategies for the two microgrids have been analyzed in HOMER Pro. Power system reactions and feasibility analyses of microgrids have been performed using ETAP simulation software. For both the considered locations, the results propound that load-following is the outperforming approach, which has the lowest energy cost of $0.1728/kWh, operational cost of $2944.13, present cost of $127,528.10, and CO2 emission of 2746 kg/year for the Chittagong microgrid and the lowest energy cost of $0.2030/kWh, operating cost of $3530.34, present cost of 149,287.30, and CO2 emission of 3256 kg/year for the Faridpur microgrid with a steady reaction of the power system.
In order to effectively reduce the workload of primary and secondary school students and the burden of off-campus training, and promote the effective improvement of the teaching and education level of schools at all levels and types, the General Office of the Central Committee of the Communist Party of Opinions on Students' Homework Burden and Off-campus Training Burden" (referred to as "double reduction"). Students' homework practice is a supplement and continuation of classroom teaching, which can consolidate and promote the quality of students' learning. This paper analyzes some problems in the design of primary school Chinese homework from three aspects, such as homework volume, homework type, and homework arrangement, and puts forward corresponding strategies for the optimization path of primary school Chinese homework design under the background of "double reduction".
Copyright © by EnPress Publisher. All rights reserved.