Developing Asia’s infrastructure gap results from both inadequate public resources and a lack of effective channels to mobilize private resources toward desired outcomes. The public-private partnership (PPP) mechanism has evolved to fill the infrastructure gap. However, PPP projects are often at risk of becoming distressed, or worst, being terminated because of the long-term nature of contracts and the many different stakeholders involved. This paper applies survival-time hazard analysis to estimate how project-related, macroeconomic, and institutional factors affect the hazard rate of the projects. Empirical results show that government’s provision of guarantees, involvement of multilateral development banks, and existence of a dedicated PPP unit are important for a project’s success. Privately initiated proposals should be regulated and undergo competitive bidding to reduce the hazard rate of the project and the corresponding burden to the government. Economic growth leads to successful project outcomes. Improved legal and institutional environment can ensure PPP success.
Dust is one of the atmospheric pollutants that have adverse environmental effects and consequences. Dust fall contains particles of 100 microns or even smaller ones, which fall from the atmosphere onto the earth surface. The aim of this study is to determine the concentration of lead in dust fall samples in order to study the pollution level of this element in Zahedan, Sistan and Baluchistan Province, Iran. Therefore, sampling was carried out using 30 marble dust collectors (MDCO) for 3 months in the spring of 2015 to investigate the quantitative variation and spatial analysis of lead content in dust fall. These dust collectors were placed at 30 stations on the building roofs with a height of approximately 1.5 meters across the city. According to the results, the mean lead concentration in the spring was 90.16 mg/kg. In addition, the zoning map of lead content shows that the lowest level of lead was measured at Imam Khomeini station while the highest amount of lead appeared in Mostafa Khomeini station.
Nanotransformations of a blanket at the fair dimensional combined processing with imposing of electric field the tool in the form of untied metal granules are considered. An object of researches are the figurine details applied in aviation, the missile and space equipment and in the oil and gas industry: driving wheels and a flowing part of cases of turbo-pump units, screws, krylchatka where there are sites of variable curvature with limited access of the tool in a processing zone.It is shown that the combination in the combined process of two-component technological environments of current carrying granules and the electroconductive liquid environment given with a high speed to a processing zone allows to receive the required quality of a blanket; action of electric field from a source with the increased tension allows to create at fair dimensional processingthe required peening from blows of firm granules. It gives the chance to raise a resource and durability of responsible knots of the aerospace equipment and oil and gas equipment, to expand the field of use of the combined processing with untied granules on a detailwith the sitesnot available to processing by a profile electrode.
Application of nanoparticles have been proven to aid heat transfer in engineering systems. This work experimentally investigated the performance of a domestic refrigerator under the influence of Al2O3 nanoparticles dispersed in mineral oil based lubricant at different charges (40, 60 and 80 g) of LPG refrigerant. The performance of the system was then investigated using test parameters including: power consumption, evaporator air temperature (pull-down time), to attain the specified International Standard Organisation (ISO) requirement for standard evaporator air temperature with small refrigerator size. Results showed improved pull down time and steady state evaporator air temperatures for the nano-lubricant based LPG. Improvement of about 11.79% in coefficient of performance (COP) was obtained with Al2O3-lubricant based LPG at 40g charge on the refrigerator system, while reduction of about 2.08% and 4.41% in COP were observed at 60 and 80 g charge of LPG based on Al2O3-lubricant respectively. Furthermore, reduction of about 13.4% and 19.53% in the power consumption of the system were observed at 40 and 60g charges of Al2O3-lubricant based LPG, whereas at 80 g, an increase of about 1.28% was recorded. Using Al2O3-LPG nano-refrigerant in domestic refrigerators is economical and also a better alternative to pure LPG.
This study uses the opening of the new Mass Rapid Transit (MRT) in stages between 2010 and 2012 in Singapore as the exogenous event to empirically test the impact of the new Circle Line (CL) on housing wealth. Applying a "differences-in-differences" approach to the non-landed private housing transaction data covering the period from 2009 to 2013, we find that the average housing prices increase by 1.6% in the post-opening of the CL. We find significant capitalization of the new CL into housing prices, especially households living within a 400-meter radius (the treatment zone) from the closest MRT stations on the CL. The treatment effects that are measured by the "marginal willingness to pay" for houses located within the treatment zone is 13.2% relative to houses located outside the treatment zone. The new CL opening creates an estimated S$1.23 billion housing wealth effects for households living in close proximity to the CL MRT stations. However, we do not find significant "anticipative" effects on house prices in the six-month window prior to the opening of CL. The strongest treatment effect is found after the opening of the phase 1 of CL, and the treatment intensity declines in phases 2 and 3 of the CL opening.
This study employs a transfer matrix, dynamic degree, stability index, and the PLUS model to analyze the spatiotemporal changes in forest land and their driving factors in Yibin City from 2000 to 2022. The results reveal the following: (1) The land use in Yibin City is predominantly characterized by cultivated land and forest land (accounting for over 95% of the total area). The area of cultivated land initially increased and then decreased, while forest land continued to decline and construction land expanded significantly. The rate of forest land loss has slowed (with the dynamic degree decreasing from −0.62% to −0.04%), and ecosystem stability has improved (the F-value increased from 2.27 to 2.9). The conversion of cultivated land to forest land is the primary driver of forest recovery, whereas the conversion of forest land to cultivated land is the main cause of reduction; (2) cultivated land is concentrated in the central and northeastern regions, while forest land is distributed in the western and southern mountainous areas. Construction land is predominantly located in urban areas and along transportation routes. Areas of forest land reduction are mainly found in the central and southern regions with rapid economic development, while areas of forest land increase are concentrated in high-altitude zones or key ecological protection areas. Stable forest land is distributed in the western and southern ecological conservation zones; (3) changes in forest land are primarily influenced by annual precipitation, elevation, and distance to rivers. Road accessibility and GDP have significant impacts, while slope, annual average temperature, and population density exert moderate influences. Distance to railways, aspect, and soil type have relatively minor effects. The findings of this study provide a scientific basis for the sustainable management of forest resources and ecological conservation in Yibin City.
Copyright © by EnPress Publisher. All rights reserved.