Smart electric meters play a pivotal role in making energy systems decarbonized and automating the energy system. Smart electric meters denote huge business opportunities for both public and private companies. Utility players can manage the electricity demand more efficiently whereas customers can monitor and control the electricity bill through the adoption of smart electric meters. The study examines the factors affecting the adoption intention of smart electric meters in Indian households. This study draws a roadmap that how utility providers and customers can improve the smart electric meters adoption. The study has five independent variables (performance expectancy, effort expectancy, social influence, environmentalism, and hedonic motivation) and one dependent variable (adoption intention). The sample size for the study is four hundred and sixty-two respondents from Delhi and the National Capital Region (NCR). The data was analysed using structural equation modelling (SEM). The results of this study have confirmed that performance expectancy, environmentalism, and social influence have a significant impact on the intention of adopting smart electric meters. Therefore, utility providers can improve their strategies to attract more customers to adopt smart electric meters by focusing more on the performance of smart electric meters and by making them environmentally friendly. This research offers meaningful insights to both customers and utility providers to make energy systems decarbonized and control energy consumption.
The following paper assesses the relationship between electricity consumption, economic growth, environmental pollution, and Information and Communications Technology (ICT) development in Kazakhstan. Using the structural equation method, the study analyzes panel data gathered across various regions of Kazakhstan between 2014 and 2022. The data were sourced from official records of the Bureau of National Statistics of Kazakhstan and include all regions of Kazakhstan. The chosen timeframe includes the period from 2014, which marked a significant drop in oil prices that impacted the overall economic situation in the country, to 2022. The main hypotheses of the study relate to the impact of electricity consumption on economic growth, ICT, and environmental sustainability, as well as ICT’s role in economic development and environmental impact. The results show electricity consumption’s positive effect on economic growth and ICT development while also revealing an increase in pollutant emissions (emissions of liquid and gaseous pollutants) with economic growth and electricity consumption. The development of ICT in Kazakhstan has been revealed to not have a direct effect on reducing pollutant emissions into the environment, raising important questions about how technology can be leveraged to mitigate environmental impact, whether current technological advancements are sufficient to address environmental challenges, and what specific measures are needed to enhance the environmental benefits of ICT. There is a clear necessity to integrate sustainable practices and technologies to achieve balanced development. These results offer important insights into the relationships among electricity consumption, technology, economic development, and environmental issues. They underscore the complexity and multidimensionality of these interactions and suggest directions for future research, especially in the context of finding sustainable solutions for balanced development.
This study explores the impact of environmental degradation on public debt in the largest Southeast Asian (ASEAN-5) countries. Prior research has not examined environmental degradation as a possible determinant of public debt in the ASEAN region. As such, the primary objective is to examine key determinants of public debt, notably economic growth, trade openness, investment, and environmental degradation. Utilizing the Fully Modified Ordinary Least Squares (FMOLS) method and data from 1996 to 2021, the study reveals a negative correlation between investment and public debt. Conversely, a positive relationship exists between economic growth, environmental degradation, and public debt levels. These findings hold significant implications for policymakers seeking to craft effective economic and environmental strategies to ensure sustainable development in the ASEAN-5 region. Stronger economic growth can drive up public debt. Importantly, the study highlights the importance of tailored approaches, considering each country’s unique fiscal and developmental characteristics. Applying the Two-Gap Model enhances the understanding of these complex dynamics in shaping public debt and its relationship with environmental factors.
This paper is devoted to the discussion of dynamical properties of anisotropic dark energy cosmological model of the universe in a Bianchi type-V space time in the framework of scale covariant theory of gravitation formulated by Canuto et al.(phys.Rev.Lett.39:429,1977).A dark energy cosmological model is presented by solving the field equations of this theory by using some physically viable conditions. The dynamics of the model is studied by computing the cosmological parameters, dark energy density, equation of state(EoS) parameter, skewness parameters, deceleration parameter and the jerk parameter. This being a scalar field model gives us the quintessence model of the universe which describes a significant dark energy candidate of our accelerating universe. All the physical quantities discussed are in agreement with the recent cosmological observations.
This comprehensive review examines recent innovations in green technology and their impact on environmental sustainability. The study analyzes advancements in renewable energy, sustainable transportation, waste management, and green building practices. To accomplish the specific objectives of the current study, the exploration was conducted using the PRISMA guidelines in major academic databases, such as Web of Science, Scopus, IEEE Xplore, and ScienceDirect. Through a systematic literature review with a research influence mapping technique, we identified key trends, challenges, and future directions in green technology. Our aggregate findings suggest that while significant progress has been made in reducing environmental impact, barriers such as high initial costs and technological limitations persist. Hence, for the well-being of societal communities, green technology innovations and practices should be adopted more widely. By investing in sustainable practices, communities can reduce environmental degradation, improve public health, and create resilient infrastructures that support both ecological and economic stability. Green technologies, such as renewable energy sources, eco-friendly construction, efficient waste management systems, and sustainable agriculture, not only mitigate pollution but also lower greenhouse gas emissions, thereby combating climate change. Finally, the paper concludes with recommendations for policymakers and industry leaders to foster the widespread adoption of green technologies.
This comprehensive review explores the forefront of nanohybrid materials, focusing on the integration of coordination materials in various applications, with a spotlight on their role in the development of flexible solar cells. Coordination material-based nanohybrids, characterized by their unique properties and multifunctionality, have garnered significant attention in fields ranging from catalysis and sensing to drug delivery and energy storage. The discussion investigates the synthesis methods, properties, and potential applications of these nanohybrids, underscoring their versatility in materials science. Additionally, the review investigates the integration of coordination nanohybrids in perovskite solar cells (PSCs), showcasing their ability to enhance the performance and stability of next-generation photovoltaic devices. The narrative further expands to encompass the synthesis of luminescent nanohybrids for bioimaging purposes and the development of layered, two-dimensional (2D) material-based nanostructured hybrids for energy storage and conversion. The exploration culminates in an examination of the synthesis of conductive polymer nanostructures, elucidating their potential in drug delivery systems. Last but not least, the article discusses the cutting-edge realm of flexible solar cells, emphasizing their adaptability and lightweight design. Through a systematic examination of these diverse nanohybrid materials, this review sheds light on the current state of the art, challenges, and prospects, providing valuable insights for researchers and practitioners in the fields of materials science, nanotechnology, and renewable energy.
Copyright © by EnPress Publisher. All rights reserved.