Financial inclusion and social protection have been recognised as the primary essential stimuli from the potential they carry as avenues for economic development, especially with respect to reduction in poverty and inequalities, the creation of employment and the enhancement overall welfare and livelihood. However, inclusive access to financial resources and equitable access to social protection interventions have remained a significant concern in Nigeria. In addition, the emergence of the COVID-19 pandemic exposed the weakness of Nigeria in all sectors of the economy such as energy, health, education and food systems and low-level inclusive access to financial resources and social protection coverage. On the other hand, this study argues that financial inclusion and social protection has the potential to mitigation shocks orchestrated by the COVID-19 pandemic. This study empirically examines how social protection interventions and access to financial resources responded to COVID-19 pandemic. The study made use of data sourced from the World Bank’s COVID-19 national longitudinal phone survey 2020 and applied the logit regression. The findings show that social protection and access to financial resources significantly associated with the likelihood of shock mitigation during the COVID-19 pandemic. The results show that social protection intervention reduces the probability of being severely affected by shocks by 0.431. Given this result, the study recommends that the government should put more effort into proper social protection intervention to mitigate the effect of the COVID-19 pandemic.
The objective of the present study is to observe the surface morphology, structure and elemental composition of the ash particles produced from some thermal power stations of India using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA). This information is useful to better understand the ash particles before deciding its utility in varied areas.
Providing and using energy efficiently is hampered by concerns about the environment and the unpredictability of fossil fuel prices and quantities. To address these issues, energy planning is a crucial tool. The aim of the study was to prioritize renewable energy options for use in Mae Sariang’s microgrid using an analytical hierarchy process (AHP) to produce electricity. A prioritization exercise involved the use of questionnaire surveys to involve five expert groups with varying backgrounds in Thailand’s renewable energy sector. We looked at five primary criteria. The following four combinations were suggested: (1) Grid + Battery Energy Storage System (BESS); (2) Grid + BESS + Solar Photovoltaic (PV); (3) Grid + Diesel Generator (DG) + PV; and (4) Grid + DG + Hydro + PV. To meet demand for electricity, each option has the capacity to produce at least 6 MW of power. The findings indicated that production (24.7%) is the most significant criterion, closely followed by economics (24.2%), technology (18.5%), social and environmental (18.1%), and structure (14.5%). Option II is strongly advised in terms of economic and structural criteria, while option I has a considerable advantage in terms of production criteria and the impact on society and the environment. The preferences of options I, IV, and III were ranked, with option II being the most preferred choice out of the four.
Purpose: Today’s challenges underscore the importance of energy across all segments of life. This scientific paper investigates the multifaceted relationship between energy efficiency, energy import reliance, population heating access, renewable energy integration, electricity production capacities, internet utilization, structural EU funds, and education/training within the framework of economic development. Methodology: Using data from selected European countries and employing self-organizing neural networks (SOM) and linear regression, this research explores how these interconnected factors influence the journey toward a sustainable and prosperous economic future. Results: The analysis revealed a strong connection between energy efficiency and numerous socioeconomic factors of modern times, with most of these connections being non-linear in nature. Conclusion: As countries work toward sustainable development goals, prioritizing energy efficiency can contribute to improved quality of life, economic growth, and environmental sustainability.
This paper examines the relationship between renewable energy (RE) generation, economic factors, infrastructure, and governance quality in ASEAN countries. Based on the Fixed Effects regression model on panel data spanning the years 2002–2021, results demonstrate that domestic capital investment, foreign direct investment, governance effectiveness, and crude oil price exhibit an inverse yet significant relationship with RE generation. An increase in those factors will lead to a decline in RE generation. Meanwhile, economic growth and infrastructure have a positive relationship, which implies that these factors act as stimulants for RE generation in the region. Hence, it is advisable to prioritise policies that foster economic growth, including offering tax breaks specifically for RE projects. Additionally, it’s crucial to streamline governance processes to facilitate infrastructure conducive to RE generation, along with investing in RE infrastructure. This could be achieved by establishing one-stop centres for consolidating permitting processes, which would streamline the often-bureaucratic process. However, given the extensive time period covered, future research should examine the short-term relationship between the variables to address any potential temporal trends between the factors and RE generation.
Due to the short cost-effective heat transportation distance, the existing geothermal heating technologies cannot be used to develop deep hydrothermal-type geothermal fields situated far away from urban areas. To solve the problem, a new multi-energy source coupling a low-temperature sustainable central heating system with a multifunctional relay energy station is put forward. As for the proposed central heating system, a compression heat pump integrated with a heat exchanger in the heating substation and a gas-fired water/lithium bromide single-effect absorption heat pump in the multifunctional relay energy station are used to lower the return temperature of the primary network step by step. The proposed central heating system is analyzed using thermodynamics and economics, and matching relationships between the design temperature of the return water and the main line length of the primary network are discussed. The studied results indicate that, as for the proposed central heating system, the cost-effective main line length of the primary network can approach 33.8 km, and the optimal design return temperature of the primary network is 23 ℃. Besides, the annual coefficient of performance and annual energy efficiency of the proposed central heating system are about 3.01 and 42.7%, respectively.
Copyright © by EnPress Publisher. All rights reserved.