Learning from experience to improve future infrastructure public-private partnerships is a focal issue for policy makers, financiers, implementers, and private sector stakeholders. An extensive body of case studies and “lessons learned” aims to improve the likelihood of success and attempts to avoid future contract failures across sectors and geographies. This paper examines whether countries do, indeed, learn from experience to improve the probability of success of public-private partnerships at the national level. The purview of the paper is not to diagnose learning across all aspects of public-private partnerships globally, but rather to focus on whether experience has an effect on the most extreme cases of public-private partnership contract failure, premature contract cancellation. The analysis utilizes mixed-effects probit regression combined with spline models to test empirically whether general public-private partnership experience has an impact on reducing the chances of contract cancellation for future projects. The results confirm what the market intuitively knows, that is, that public-private partnership experience reduces the likelihood of contract cancellation. But the results also provide a perhaps less intuitive finding: the benefits of learning are typically concentrated in the first few public-private partnership deals. Moreover, the results show that the probability of cancellation varies across sectors and suggests the relative complexity of water public-private partnerships compared with energy and transport projects. An estimated $1.5 billion per year could have been saved with interventions and support to reduce cancellations in less experienced countries (those with fewer than 23 prior public-private partnerships).
Electricity consumption in Europe has risen significantly in recent years, with households being the largest consumers of final electricity. Managing and reducing residential power consumption is critical for achieving efficient and sustainable energy management, conserving financial resources, and mitigating environmental effects. Many studies have used statistical models such as linear, multinomial, ridge, polynomial, and LASSO regression to examine and understand the determinants of residential energy consumption. However, these models are limited to capturing only direct effects among the determinants of household energy consumption. This study addresses these limitations by applying a path analysis model that captures the direct and indirect effects. Numerical and theoretical comparisons that demonstrate its advantages and efficiency are also given. The results show that Sub-metering components associated with specific uses, like cooking or water heating, have significant indirect impacts on global intensity through active power and that the voltage affects negatively the global power (active and reactive) due to the physical and behavioral mechanisms. Our findings provide an in-depth understanding of household electricity power consumption. This will improve forecasting and enable real-time energy management tools, extending to the design of precise energy efficiency policies to achieve SDG 7’s objectives.
Analysing external factors with a design-thinking approach is crucial for adaptation, identifying opportunities, and mitigating risks in native digital enterprises. This research introduces a framework rooted in design principles and future scenarios for external analysis, with the aim of meeting current market needs. The study employs a mixed qualitative-quantitative research approach, incorporating methods such as literature review, workshops, and surveys. These methods enable the collection and analysis of both qualitative and quantitative data, providing a comprehensive and accurate understanding of the research topic by using it in a DNVB case study. Developing a conceptual framework using a design-thinking approach which we call ASPECT contributes to a comprehensive interpretation of complexity, intertwining collective and individual factors. This reduces the risk of overlooking essential elements when making strategic decisions in ambiguous, uncertain, and volatile contexts. This method contrasts with traditional external analysis frameworks like CAME, Pestle, and SWOT. The document aims to contribute to the literature by exploring new models of external analysis based on the design process. This framework combines the conventional stages of a design thinking process with methodologies for future scenarios to identify relevant external factors for organizations. It provides an innovative conceptual framework for creating new business models and growth strategies for digital enterprises.
This study examines the factors influencing e-government adoption in the Tangerang city government from 2010 to 2022. We gathered statistics from multiple sources to reduce joint source prejudice, resulting in a preliminary illustration of 1670 annotations from 333 regions or cities. These regions included major urban centers such as Jakarta, Surabaya, Bandung, Medan, Makassar, and Denpasar, as well as other significant municipalities across Indonesia. After removing anomalous values, we retained a final illustration of 1656 annotations. Results indicate that higher-quality digital infrastructure significantly boosts e-government adoption, underscoring the necessity for resilient digital platforms. Contrary to expectations, increased budget allocation for digital initiatives negatively correlates with adoption levels, suggesting the need for efficient spending policies. IT training for staff showed mixed results, highlighting the importance of identifying optimal training environments. The study also finds that policy adaptability and organizational complexity moderate the relationships between digital infrastructure, budget, IT training, and e-government adoption. These findings emphasize the importance of a holistic approach integrating technological, organizational, and policy aspects to enhance e-government implementation. The insights provided are valuable for policymakers and practitioners aiming to improve digital governance and service delivery. This study reveals the unexpected negative correlation between budget allocation and e-government adoption and introduces policy adaptability and organizational complexity as critical moderating factors, offering new insights for optimizing digital governance.
The major goal of decisions made by a business organization is to enhance business performance. These days, owners, managers and other stakeholders are seeking for opportunities of modelling and automating decisions by analysing the most recent data with the help of artificial intelligence (AI). This study outlines a simple theoretical model framework using internal and external information on current and potential clients and performing calculations followed by immediate updating of contracting probabilities after each sales attempt. This can help increase sales efficiency, revenues, and profits in an easily programmable way and serve as a basis for focusing on the most promising deals customising personal offers of best-selling products for each potential client. The search for new customers is supported by the continuous and systematic collection and analysis of external and internal statistical data, organising them into a unified database, and using a decision support model based on it. As an illustration, the paper presents a fictitious model setup and simulations for an insurance company considering different regions, age groups and genders of clients when analysing probabilities of contracting, average sales and profits per contract. The elements of the model, however, can be generalised or adjusted to any sector. Results show that dynamic targeting strategies based on model calculations and most current information outperform static or non-targeted actions. The process from data to decision-making to improve business performance and the decision itself can be easily algorithmised. The feedback of the results into the model carries the potential for automated self-learning and self-correction. The proposed framework can serve as a basis for a self-sustaining artificial business intelligence system.
Copyright © by EnPress Publisher. All rights reserved.