The crypto space offers numerous opportunities for users to grow their wealth through trading, lending, and borrowing activities. However, these opportunities come with inherent risks that need to be carefully managed to protect your assets and maximize returns. By understanding the risks associated with wallets and depository services, trading, lending, and borrowing, users can make informed decisions and enjoy the benefits of the rapidly evolving world of cryptocurrencies. This review paper analyses 43 papers for the period of 2019–2023 and proposes recommendations for policy makers. The results confirm that international regulators expect national authorities to implement a regulatory framework for digital assets comparable to those that already exist for traditional finance. For national authorities, this means having and using the powers, tools and resources to regulate and oversee a growing market. Authorities should cooperate and coordinate with each other, at the national and international levels, to encourage consistency and knowledge sharing. Market operators (exchanges), service providers, exchanges and wallets, create effective risk management structures, as well as reliable mechanisms for collecting, storing, protecting and reporting data.
Increasingly, U.S. cities are focusing on transit-oriented development (TOD) policies to expand the stock of higher-density, mixed-use development near public transit stations within the context of a transit corridor and, in most cases, a regional metropolis. A TOD zone relies on a regulatory and institutional environment, public and private participation and investment, and development incentives to create vibrant, people-oriented communities and mobility options and to support business development. TODs provide local governments with more tax revenues due to increased property values (and, as applicable, income and sales tax revenues), but most planning for TODs ignores the non-transit infrastructure costs of increasing development density. This study focused on determining the water and sewer infrastructure costs for TOD zones along a rail line in southeast Florida. The finding was that millions of dollars in funds are needed to meet those water and sewer needs and that few are currently planned as a part of community capital improvement programs.
Graphene and derivatives have been frequently used to form advanced nanocomposites. A very significant utilization of polymer/graphene nanocomposite was found in the membrane sector. The up-to-date overview essentially highlights the design, features, and advanced functions of graphene nanocomposite membranes towards gas separations. In this concern, pristine thin layer graphene as well as graphene nanocomposites with poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), polyimide, and other matrices have been perceived as gas separation membranes. In these membranes, the graphene dispersion and interaction with polymers through applying the appropriate processing techniques have led to optimum porosity, pore sizes, and pore distribution, i.e., suitable for selective separation of gaseous molecules. Consequently, the graphene-derived nanocomposites brought about numerous revolutions in high-performance gas separation membranes. The structural diversity of polymer/graphene nanocomposites has facilitated the membrane selective separation, permeation, and barrier processes, especially in the separation of desired gaseous molecules, ions, and contaminants. Future research on the innovative nanoporous graphene-based membrane can overcome design/performance-related challenging factors for technical utilizations.
Copyright © by EnPress Publisher. All rights reserved.