The national park with Chinese characteristics is the highest level of protection of a kind of natural protection, its establishment marks the park will implement the strictest ecological protection means. It is of great value to construct the utilization system of national park resources under the new natural protected area system in the new era to avoid the misunderstanding of “ecological protection only” and explore how to carry out the sustainable utilization of resources in the reform of national park system and mechanism. According to the analytic hierarchy process (AHP) and Delphi method, the evaluation framework, indicators, reference standards and weights of resource utilization under the national park system were determined in combination with the requirements of constructing the protected natural area system and the total value of resource ecosystem services (including harvest value, existence value and future value). Based on the application research of Bawangling zone of Hainan Tropical Rainforest National Park, the optimal resource utilization system in the future was proposed, and two optimization strategies of ecological adjustment of resource utilization system and construction of suitable resource utilization system were put forward.
Knowledge of the presence of heavy metals in soils of agricultural areas is important to prevent their accumulation in cultivated plants. The objective of the present investigation was to evaluate the total concentrations and fractions of heavy metals Cd, Pb, Zn, Fe, Mn, Ni, Cu, Cr and Co in the tobacco-growing area of Pinar del Río, Cuba and their relationship with the physicochemical properties of soil. For the study, 59 samples of three types of soils were collected at 20 cm depth. The pseudo-total concentrations of metals in the soils are low and lower than the prevention values registered for Cuban soils. In general, the heavy metals studied present a high affinity for the most stable fractions of the soil, which means a low risk of transfer to the tobacco crop or accumulation in groundwater. The pseudo-total concentrations of heavy metals were low, below the alert values established for soils in the region. The heavy metals studied were mainly associated with the residual fraction, the second fraction with the highest association with metals was that linked to manganese and iron oxides. The principal component analysis showed that their main source is pedogenetic and that these elements are closely related to cation exchange capacity and calcium content.
It increased the demands on ground-water supplies that prolonged drought and improper maintenance of water resources. So it is necessary to evaluate ground-water resources in the hard rock terrain. In recent years, Remote-Sensing methods have been increasingly recognized as a means of obtaining crucial geoscientific data for both regional and site-specific investigations. This work aims to develop and apply integrated methods combining the information obtained by geo-hydrological field mapping and those obtained by analyzing multi-source remotely sensed data in a GIS environment for better understanding the Groundwater condition in hard rock terrain. In this study, digitally enhanced Landsat ETM+ data was used to extract information on geology, geomorphology. The Hill-Shading techniques are applied to SRTM DEM data to enhance terrain perspective views, and extract Geomorphological features and morphologically defined structures through the means of lineament analysis. A combination of Spectral information from Landsat ETM+ data plus spatial information from SRTM-DEM data is used to address the groundwater potential of alluvium, colluvium, and fractured crystalline rocks in the study area. The spatial distribution of groundwater potential zones shows regional patterns related to lithologies, lineaments, drainage systems, and landforms. High-yielding wells and springs are often related to large lineaments and corresponding structural features such as dykes. The results show that the combination of remote sensing, GIS, traditional fieldwork, and models provide a powerful tool for water resources assessment and management, and groundwater exploration planning.
The sea level rise under global climate change and coastal floods caused by extreme sea levels due to the high tide levels and storm surges have huge impacts on coastal society, economy, and natural environment. It has drawn great attention from global scientific researchers. This study examines the definitions and elements of coastal flooding in the general and narrow senses, and mainly focuses on the components of coastal flooding in the narrow sense. Based on the natural disaster system theory, the review systematically summarizes the progress of coastal flood research in China, and then discusses existing problems in present studies and provide future research directions with regard to this issue. It is proposed that future studies need to strengthen research on adapting to climate change in coastal areas, including studies on the risk of multi- hazards and uncertainties of hazard impacts under climate change, risk assessment of key exposure (critical infrastructure) in coastal hotspots, and cost-benefit analysis of adaptation and mitigation measures in coastal areas. Efforts to improve the resilience of coastal areas under climate change should be given more attention. The research community also should establish the mechanism of data sharing among disciplines to meet the needs of future risk assessments, so that coastal issues can be more comprehensively, systematically, and dynamically studied.
In this paper, a detailed mineralogical and genesis investigation have been carried out in the seven locations of the Iron Ore in Hazara area. Thick bedded iron ore have been observed between Kawagarh Formation and Hangu Formation i.e., Cretaceous-Paleocene boundary. At the base of Hangu Formation, variable thickness of these lateritic beds spread throughout the Hazara and Kohat-Potwar plateau. This hematite ore exists in the form of unconformity. X-ray diffraction technique (XRD), X-ray fluorescence spectrometry (XRF), detailed petroghraphic study and scanning electron microscope (SEM) techniques indicated that those iron bears minerals including hematite, chamosite and quartz, albite, clinochlore, illite-montmorillonite, kaolinite, calcite, dolomite, whereas ankerite are the impurities present in these beds. The X-ray fluorescence (XRF) results show that the total Fe2O3 ranges from 39 to 56%, with high silica and alumina ratio of less than one. Beneficiation requires for significant increase in ore grade. The petroghraphic study revealed the presence of ooids fragments as nuclei of other ooids with limited clastic supply, which indicate high energy shallow marine depositional setting under warm and humid climate. The overall results show that Langrial Iron Ore is a low-grade iron ore which can be upgraded up to 62% by applying modern mining techniques so as to fulfill steel requirements of the country.
A geologic and geomorphologic study aimed at solving some geological and geotechnical problems, regarding the massive seepage of meteoric waters in the coastal cliffs of the Island of Procida (Naples Bay, Southern Italy) composed of both tuffs and loose pyroclastic deposits, has been carried out in the geosites of Terra Murata (Middle Ages village and coastal cliff towards the Corricella Bay) and Centane-Panoramica (coastal cliff facing on the Tyrrhenian Sea).
A detailed geologic and geomorphologic survey has allowed to suggest solutions to the applied geological and geotechnical problems related to the occurrence of massive seepages of waters at the physical interface between pyroclastic rocks and loose pyroclastic deposits, characterized by different density, permeability and porosity and also controlled by a dense network of fractures, involving the pyroclastic deposits cropping out in the selected areas.
Field sampling and geotechnical laboratory analyses have been carried out to calculate the values of main geotechnical parameters of the yellow tuffs cropping out at the Terra Murata Promontory. At the same time, a detailed monitoring of the seepages of waters has been carried out through a detailed geological survey of the tuff outcrops of the promontory. The obtained results have suggested a strong control from both the geomorphologic instability of the coastal cliff and tectonic setting. At the Centane-Panoramica geosite, the geological survey, coupled with geotechnical analyses and standard penetrometric tests, has accordingly evidenced that the geomorphologic instability was mainly concentrated in the sectors of the tuff coastal cliffs facing seawards towards the Tyrrhenian Sea.
Copyright © by EnPress Publisher. All rights reserved.