This study comprehensively evaluates the system performance by considering the thermodynamic and exergy analysis of hydrogen production by the water electrolysis method. Energy inputs, hydrogen and oxygen production capacities, exergy balance, and losses of the electrolyzer system were examined in detail. In the study, most of the energy losses are due to heat losses and electrochemical conversion processes. It has also been observed that increased electrical input increases the production of hydrogen and oxygen, but after a certain point, the rate of efficiency increase slows down. According to the exergy analysis, it was determined that the largest energy input of the system was electricity, hydrogen stood out as the main product, and oxygen and exergy losses were important factors affecting the system performance. The results, in line with other studies in the literature, show that the integration of advanced materials, low-resistance electrodes, heat recovery systems, and renewable energy is critical to increasing the efficiency of electrolyzer systems and minimizing energy losses. The modeling results reveal that machine learning programs have significant potential to achieve high accuracy in electrolysis performance estimation and process view. This study aims to contribute to the production of growth generation technologies and will shed light on global and technological regional decision-making for sustainable energy policies as it expands.
The artificial intelligence (AI)-based architect’s profile’s selection (simply iSelection) uses a polymathic mathematical model and AI-subdomains’ integration for enabling automated and optimized human resources (HR) processes and activities. HR-related processes and activities in the selection, support, problem-solving, and just-in-time evaluation of a transformation manager’s or key team members’ polymathic profile (TPProfile). Where a TPProfile can be a classical business manager, transformation manager, project manager, or an enterprise architect. iSelection-related selection processes use many types of artifacts, like critical success factors (CSF), AI-subdomain’ integration environments, and an enterprise-wide decision-making system (DMS). iSelection focuses on TPProfiles for various kinds of transformation projects, like the case of the transformation of enterprises’ HRs (EHR) processes, activities, and related fields, like enterprise resources planning (ERP) environments, financial systems, human factors (HF) evolution, and AI-subdomains. The iSelection tries to offer a well-defined (or specific) TPProfile, which includes HF’s original-authentic capabilities, education, affinities, and possible polymathical characteristics. Such a profile can also be influenced by educational or training curriculum (ETC), which also takes into account transformation projects’ acquired experiences. Knowing that selected TPProfiles are supported by an internal (or external) transformation framework (TF), which can support standard transformation activities, and solving various types of iSelection’s problems. Enterprise transformation projects (simply projects) face extremely high failure rates (XHFR) of about 95%, which makes EHR selection processes very complex.
Artificial intelligence chatbots can be used to conduct research effectively and efficiently in the fifth industrial revolution. Artificial intelligence chatbots are software applications that utilize artificial intelligence technologies to assist researchers in various aspects of the research process. These chatbots are specifically designed to understand researchers’ inquiries, provide relevant information, and perform tasks related to data collection, analysis, literature review, collaboration, and more. The purpose of this study is to investigate the use of artificial intelligence chatbots for conducting research in the fifth industrial revolution. This qualitative study adopts content analysis as its research methodology, which is grounded in literature review incorporating insights from the researchers’ experiences with utilizing artificial intelligence. The findings reveal that researchers can use artificial intelligence chatbots to produce quality research. Researchers are exposed to various types of artificial intelligence chatbots that can be used to conduct research. Examples are information chatbots, question and answer chatbots, survey chatbots, conversational agents, peer review chatbots, personalised learning chatbots and language translation chatbots. Artificial intelligence chatbots can be used to perform functions such as literature review, data collection, writing assistance and peer review assistance. However, artificial intelligence chatbots can be biased, lack data privacy and security, limited in creativity and critical thinking. Researchers must be transparent and take in consideration issues of informed content and data privacy and security when using artificial intelligence chatbots. The study recommends a framework on artificial intelligence chatbots researchers can use to conduct research in the fifth industrial revolution.
Objective: This study synthesizes current evidence on the role of Artificial Intelligence (AI) and, where relevant, Open Science (OS) practices in enhancing Human Resource Management (HRM) performance. It focuses on recruitment processes, ethical considerations, and employee participation. Methodology: A systematic literature review was conducted in Scopus covering the period 2019–2024, following PRISMA guidelines. The initial search yielded 1486 records. After de-duplication and screening using Rayyan, 66 studies (≈ 4.4%) met the inclusion criteria, which targeted peer-reviewed works addressing AI-supported HR decision-making. A combined content and bibliometric analysis was performed in R (Bibliometrix) to identify thematic patterns and conceptual structures. Results: Analysis revealed four thematic clusters: 1) Implementation and employee participation emphasizing human-in-the-loop approaches and effective change management; 2) ethical challenges including algorithmic bias, transparency gaps, and data privacy risks; 3) data-driven decision-making delivering higher accuracy, fewer errors, and personalized recruitment and performance assessment; 4) operational efficiency enabling faster workflows and reduced administrative workloads. AI tools consistently improved selection quality, while OS practices promoted transparency and knowledge sharing. Implications: The successful adoption of AI in HRM requires employee engagement, strong ethical safeguards, and transparent data governance. Future research should address the long-term cultural, organizational, and well-being impacts of AI integration, as well as its sustainability.
Copyright © by EnPress Publisher. All rights reserved.