We have studied the effect of the series resistance on the heating of the cathode, which is based on carbon nanotubes and serves to realize the field emission of electrons into the vacuum. The experiment was performed with the single multi-walled carbon nanotube (MCNT) that was separated from the array grown by CVD method with thin-film Ni-Ti catalyst (nickel 4 nm/Ti 10 nm). The heating of the cathode leads to the appearance of a current of the thermionic emission. The experimental voltage current characteristic exhibited the negative resistance region caused by thermal field emission. This current increases strongly with increasing voltage and contributes to the degradation of the cold emitter. The calculation of the temperature of the end of the cathode is made taking into account the effect of the phenomenon that warms up and cools the cathode. We have developed a method for processing of the emission volt-ampere characteristics of a cathode, which relies on a numerical calculation of the field emission current and the comparison of these calculations with experiments. The model of the volt-ampere characteristic takes into account the CNT’s geometry, properties, its contact with the catalyst, heating and simultaneous implementation of the thermionic and field emission. The calculation made it possible to determine a number of important parameters, including the voltage and current of the beginning of thermionic emission, the temperature distribution along the cathode and the resistance of the nanotube. The phenomenon of thermionic emission from CNTs was investigated experimentally and theoretically. The conditions of this type emission occurrence were defined. The results of the study could form the basis of theory of CNT emitter’s degradation.
Coal is important basic energy and important raw materials, the development of coal industry to support the rapid development of the national economy. In the 1950s and 1960s, the proportion of coal in China's primary energy production and consumption structure accounted for 90% and 80% respectively, and the proportion of coal in 2004 was 75.6% and 67.7% respectively. In recent years, with the rapid development of fully mechanized mining equipment manufacturing technology, fully mechanized mining equipment to heavy, strong and automated, so that the reliability of the equipment is guaranteed, a strong impetus to the development of large mining technology, new round of coal mining technology revolution, the current in the East, Jincheng and other mining areas have been the first in the thick coal seam f = 1.5-5 use of large mining height fully mechanized mining equipment, to achieve the highest efficiency, the lowest cost of tons of coal. The main points of this paper are: in the production of coal enterprises to improve the competitiveness of the coal market. Conditions and conditions of coal storage conditions should be allowed to give priority to the use of large mining and mining methods.
Bagasse fiber from sugarcane waste is used with epoxy resin to make natural composites. The raw fibers are treated chemically to improve compatibility and adherence with the epoxy polymer. It’s anticipated that epoxy resin matrix composites reinforced with bagasse particles would work as a trustworthy replacement for conventional materials utilized in the building and automobile sectors. The amount and distribution of reinforcing particles inside the matrix are two factors that impact the composite’s strength. Furthermore, the precise proportion of reinforcing elements—roughly 20–30 weight percent—into the matrix plays a critical role in providing a noticeable boost in improving the properties of the composites. This research investigates the impact of reinforcing alkali-treated bagasse and untreated bagasse powder into an epoxy matrix on aspects of mechanical and morphological characteristics. The hand layup technique is used to create alkali-treated bagasse and untreated bagasse powder-reinforced epoxy composites. Composites are designed with six levels of reinforcement weight percentages (5%, 10%, 15%, 20%, 25%, and 30%). Microstructural analysis was performed using SEM and optical microscopes to assess the cohesion and dispersion of the reinforcing particles throughout the hybrid composites’ matrix phase. With reinforcement loading up to 20 wt%, the tensile strength, impact strength, and toughness of epoxy-alkali-treated bagasse and untreated bagasse powder-reinforced composites increased. In contrast, treated bagasse epoxy composites were superior to untreated epoxy composites in terms of efficacy. The results indicate that 20 wt% alkali bagasse powder provides better mechanical properties than other combinations.
Yunnan is rich in cultural heritage, with its primitive pottery techniques coexisting with modern pottery techniques, and is known as the “Museum of Ceramic History”. Due to regional and socio-economic development factors, some folk pottery and craftsmen have faded out of sight or only circulated in a few small areas and specific environments. The study analyzes and summarizes the characteristics of Yunnan folk pottery and industry and evaluates the Yunnan folk pottery value based on the conditional valuation method. The study takes the folk pottery of the Bai nationality in Dali, Yunnan as an example and obtains the evaluation results of the purchasing motivation value of the pottery through a questionnaire survey. 45.26% of people pay for their existence value, 26.03% pay for their choice value, and 28.71% pay for their legacy value. Based on the evaluation results, the study proposes targeted activation paths for Yunnan folk pottery, including innovative development combined with new technologies, highlighting the functional characteristics of pottery, and brand building. This study will help Yunnan folk pottery find more suitable ways of protection and inheritance in the rapid development of materials and technology. This study can help inheritors gain the possibility of sustainable development and provide reference value for the activation path of other traditional folk.
In view of the fact that the convolution neural network segmentation method lacks to capture the global dependency of infected areas in COVID-19 images, which is not conducive to the complete segmentation of scattered lesion areas, this paper proposes a COVID-19 lesion segmentation method UniUNet based on UniFormer with its strong ability to capture global dependency. Firstly, a U-shaped encoder-decoder structure based on UniFormer is designed, which can enhance the cooperation ability of local and global relations. Secondly, Swin spatial pyramid pooling module is introduced to compensate the influence of spatial resolution reduction in the encoder process and generate multi-scale representation. Multi-scale attention gate is introduced at the skip connection to suppress redundant features and enhance important features. Experiment results show that, compared with the other four methods, the proposed model achieves better results in Dice, loU and Recall on COVID-19-CT-Seg and CC-CCIII dataset, and achieves a more complete segmentation of the lesion area.
The study focused on investigating the effects of varying levels of HA (HA1 = 0, HA2 = 25, HA3 = 50, HA4 = 75, and HA5 = 100) on Red Dragon, Red Prince, and Red Meat varieties of red radish. This analysis aimed to unravel the relationship between different levels of HA and their impact on the growth and productivity of red radish genotypes. The findings revealed that the Red Prince genotype attained the utmost plant height of 24.00 cm, an average of 7.50 leaves per plant, a leaf area of 23.11 cm2, a canopy cover of 26.76%, a leaf chlorophyll content of 54.60%, a leaf fresh weight of 41.16 g, a leaf dry weight of 8.20 g, a root length measuring 9.73 cm, a root diameter of 3.19 mm, a root fresh weight of 27.60 g, a root dry weight of 6.75 g, and a remarkable total yield of 17.93 tons per hectare. The implications of this study are poised to benefit farmers within the Dera Ismail Khan Region, specifically in the plain areas of Pakistan, by promoting the cultivation of the Red Prince variety.
Copyright © by EnPress Publisher. All rights reserved.