Kinnow production is hampered due to the lack of micronutrient applications such as zinc (Zn), iron (Fe), and manganese (Mn), which play a significant role in the metabolic activities of the plant, affecting yield and quality. The farmers of the region use mineral micronutrient fertilizers, but it leads to phytotoxicity due to unoptimized fertilizer application dose. In the present investigation, an attempt has been made to optimize the Zn, Mn, and Fe minerals dose as tank mix foliar application for improvement of fruit yield, quality, and uptake of nutrients. The twelve combinations of different doses of zinc sulphate, manganese sulphate, and ferrous sulphate fertilizers replicated three times were tested at kinnow orchards established at Krishi Vigyan Kendra, Bathinda, Punjab, India. The data revealed that the fruit drop was significantly low in the treatment F12 (43.4%) (tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 ) compared to control treatment. The fruit yield per tree was significantly higher in the treatment F12 compared to untreated control. The juice percentage was also recorded higher in treatment F12 as compared to control, and the juice percentage improved by 2.6%. The leaf nutrient analysis also revealed translocation of higher amount of nutrient from leaf to fruit under optimized supply of micronutrient. Thus, the application of tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 may be used for better fruit yield and quality.
In the context of education informatization construction, the heavy responsibility of promoting the integration of new technologies into the classroom falls on the shoulders of educators. With the increasing maturity of virtual technology, a new classroom form gradually comes into our view. In this study, we use "Physics Lab" to carry out inquiry-based teaching, provide a virtual experiment platform, help students to construct knowledge through inquiry, and provide theoretical and practical references for teachers.
This study was carried out at the Teaching and Research Farm of Landmark University, Omu-Aran. Treatments consisted of 3 levels of cocoa pod husk ash (0, 2 and 4 tonnes CPHA ha-1), 3 levels of cocoa pod husk powder (0, 2 and 4 tonnes CPHP ha-1), NPK and the control. The experiment was laid out in a Randomized Complete Block Design (RCBD) replicated four times. The following parameters were taken plant height, number of leaves (at 2, 3, and 4 weeks after sowing), total plant weight, root weight, leaf weight, roots girth and roots length. Data collected were subjected to Analysis of Variance (ANOVA) Using S.A.S, 2000. Treatment means were compared using Duncan Multiple Range Test (DMRT) at 0.05 level of probability. Results showed that chemical analysis of cocoa pod ash and powder contained plant nutrients as N, P, K, Ca, Mg and some other micronutrients in varying proportions. Application of CPHA 4 + CPHP 2 gave higher values for all the vegetative parameters. The implication of this study is that high level of cocoa pod husk powder in combination with high level of cocoa pod husk ash is detrimental to radish cultivation. In the same vein, the nutrition of radish was incomplete when NPK fertilizer was applied. It can therefore be recommended that the use of combined application of cocoa pod ash and cocoa pod powder at CPHA4 + CPHP2 was sufficient for the cultivation of radish (Raphanus sativus) in the study area as it compete favorably with application of NPK fertilizer.
With the acceleration of economic development and urban construction, urban security accidents have occurred around the world with alarming frequency, causing serious casualties and economic losses. Urban security planning and management as emerging areas of research have drawn widespread attention. For city development plans, urban security planning and management have become one of major topics. This paper first outlines the principles of urban security planning and management, combined with the construction of a digital and intelligent platform for urban emergency management. This research then analyzes the core technology and equipment support system of urban security management and its practical application. It also presents a new model based on urban security planning and management, followed by examples of its application in some mega infrastructure development for security planning and design (for example, Singapore Changi Airport and Shanghai Hongqiao Airport Transportation Hub). Additionally, a blast protection concept of urban security planning and management is provided.
Highly nutritive and antioxidants-enriched okra (Abelmoschus esculentus) gets sub-optimal field yield due to the irregular germination coupled with non-synchronized harvests. Hence, the research aimed at assessing the combined impact of seed priming and field-level gibberellic acid (GA3) foliar spray on the yield and post-harvest quality of okra. The lab studies were conducted using a complete randomized design (CRD), while the field trials were performed following a factorial randomized complete block design (RCBD) with three replications. Okra seeds were subjected to ten different priming methods to assess their impact on seed germination and seeding vigor. In the premier step, okra seeds were subjected to ten different priming methods, like hydro priming for 6, 12, and 18 h, halo priming with 3% NaCl at 35 ℃, 45 ℃, and 60 ℃, acid priming with 80% H2SO4 for 2.5, 5, and 10 min. Based on the observation, hydro priming for 12 h exhibited the best germination rate (90%), followed by halo seed priming at 60 ℃ and acid priming for 5 min. Furthermore, the halo priming at 60 ℃ demonstrated the greatest seedling vigor index (1965), whereas acid priming for 5 min resulted in favorable outcomes in terms of early emergence in 2.66 days. In addition, varying concentrations of GA3 (0, 100, 200, and 300 ppm) were also administered to the best three primed seedlings for evaluating their field performance. The findings indicated that applying GA3 at a concentration of 300 ppm to seedlings raised through acid priming (80% H2SO4 for 5 min) resulted in improved leaf length, reduced time to flowering (first and 50%) and harvest, increased pod diameter, individual pod weight, and yield per plant (735.16 g). Additionally, the treatment involving GA3 at 300 ppm with halo priming (3% NaCl) at 60 ℃ exhibited the longest shelf life (21 days) of okra with the lowest levels of rotting (6.73%) and color change (1.12) in the polyethylene storage condition.
Copyright © by EnPress Publisher. All rights reserved.