This study evaluated the performance of several machine learning classifiers—Decision Tree, Random Forest, Logistic Regression, Gradient Boosting, SVM, KNN, and Naive Bayes—for adaptability classification in online and onsite learning environments. Decision Tree and Random Forest models achieved the highest accuracy of 0.833, with balanced precision, recall, and F1-scores, indicating strong, overall performance. In contrast, Naive Bayes, while having the lowest accuracy (0.625), exhibited high recall, making it potentially useful for identifying adaptable students despite lower precision. SHAP (SHapley Additive exPlanations) analysis further identified the most influential features on adaptability classification. IT Resources at the University emerged as the primary factor affecting adaptability, followed by Digital Tools Exposure and Class Scheduling Flexibility. Additionally, Psychological Readiness for Change and Technical Support Availability were impactful, underscoring their importance in engaging students in online learning. These findings illustrate the significance of IT infrastructure and flexible scheduling in fostering adaptability, with implications for enhancing online learning experiences.
The endogenous, human, and social factors influencing the economic development of the municipalities of San Juan Cotzocón and San Pedro y San Pablo Ayutla in the Istmo de Tehuantepec region of the state of Oaxaca are analyzed. The hypothesis posits that the dimensions of endogenous development, social capital, and human capital directly impact the economic development of the respective municipalities. The study involved administering 262 questionnaires to the residents of these municipalities during the month of May 2023. The collected data were examined using exploratory factor analysis to determine the underlying structure and structural equation modeling to estimate the effects and relationships between variables. Results indicate that endogenous development, social capital, and human capital are factors in the economic development of the studied communities, with endogenous development being the most influential factor due to its statistical significance. Notably, the existence of tourist and cultural attractions in the municipalities emerges as a catalyst for local economic development in response to the establishment and operation of the Isthmus of Tehuantepec Interoceanic Corridor.
In rural areas, land use activities around primary arterial roads influence the road section’s traffic characteristics. Regulations dictate the design of primary arterial roads to accommodate high speeds. Hence, there is a mix of traffic between high-speed vehicles and vulnerable road users (pedestrians, bicycles, and motorcycles) around the land. As a result, researchers have identified several arterial roads in Indonesia as accident-prone areas. Therefore, to improve the road user’s safety on primary arterial roads, it is necessary to develop models of the influence of various factors on road traffic accidents. This research uses binary logistic regression analysis. The independent variables are carelessness, disorderliness, high speed, horizontal alignment, road width, clear zone, road shoulder width, signs, markings, and land use. Meanwhile, the dependent variable is the frequency of accidents, where the frequency of accidents consists of multi-accident vehicles (MAV) and single-accident vehicles (SAV). This study collects data for a traffic accident prediction model based on collision frequency in accident-prone areas. The results, road shoulder width, and road sign factor all have an impact on the frequency of traffic accidents. According to a realistic risk analysis, MAV and SAV have no risk difference. After validation, this model shows a confidence level of 92%. This demonstrates that the model generates estimations that accurately reflect reality and are applicable to a wider population. This research has the potential to assist engineers in improving road safety on primary arterial roads. In addition, the model can help the government measure the impact of implemented policies and engage the public in traffic accident prevention efforts.
In this Data science research on Education, it analyses the alcohol consumption, parent’s education, study time and other factors may influence on student performance.
This research presents a bibliometric review of scientific production on the social and economic factors that influence mortality from tuberculosis between the years 2000 and 2024. The analysis covered 1742 documents from 848 sources, revealing an annual growth of 6% in scientific production with a notable increase starting in 2010, reaching a peak in 2021. This increase reflects growing concern about socioeconomic inequalities affecting tuberculosis mortality, exacerbated in part by the COVID-19 pandemic. The main authors identified in the study include Naghavi, Basu and Hay, whose works have had a significant impact on the field. The most prominent journals in the dissemination of this research are Plos One, International Journal of Tuberculosis and Lung Disease and The Lancet. The countries with the greatest scientific production include the United States, the United Kingdom, India and South Africa, highlighting a strong international contribution and a global approach to the problem. The semantic development of the research shows a concentration on terms such as “mortality rate”, “risk factors” and “public health”, with a thematic map highlighting driving themes such as “socioeconomic factors” and “developing countries”. The theoretical evolution reflects a growing interest in economic and social aspects to gender contexts and associated diseases. This study provides a comprehensive view of current scientific knowledge, identifying key trends and emerging areas for future research.
Since 2022, global geopolitical conflicts have intensified, and there has been a notable increase in the international community’s demand for currency diversification. This has created a new opportunity for the internationalization of the Renminbi (RMB). This paper examines the factors influencing the internationalization of the RMB, with a particular focus on its role as a unit of account, medium of exchange and store of value. These functions are considered in conjunction with the digital technological innovation represented by e-CNY. The methodology employed is based on the vector autoregression (VAR) model, Granger causality test and variance decomposition analysis. The Granger causality test indicates that digital technology innovation is not the primary driver of RMB internationalization at this juncture. The impulse response analysis and variance decomposition analysis revealed that the impact and direction of influence exerted by the various factors on RMB internationalization exhibit considerable discrepancies.
Copyright © by EnPress Publisher. All rights reserved.