Purpose: The major objective of this study is to measure the impact of various attributes, such as social attraction, physical attraction, and task attraction on para-social relationships. The study also seeks to measure how the para-social relationship mediates the association between the three attributes (above-mentioned) on perceived credibility and informational influence, and consumers’ intention to purchase banking products. Study design/methodology: PLS-SEM has been used as it is believed to be most suited for the study due to the multivariate non-normality in the data, and the small sample size. Data has been collected using the 5-point Likert scale from approximately 151 respondents, who were selected using the non-random sampling method based on purposive sampling coupled with convenience-based sampling. The data was collected from January 2023 to August 2023. Findings: Largely, the findings reveal that both social and physical attractions do have a positive impact on the para-social relationship, further leading to perceived credibility and informational influence. Notably, this perceived credibility and informational influence lead to consumers’ intentions to purchase banking products, albeit with the use of artificial intelligence-based chatbots and digital assistants. Originality: This is possibly among the first-ever studies extending the para-social theory for purchasing banking products and services using artificial intelligence-based chatbots and virtual assistants.
The objective of this research is to examine the effects of income inequality, governance quality, and their interaction on environmental quality in Asian countries. Time series data are obtained from 45 Asian countries for the period 1996–2020 for this empirical analysis. The research has performed various econometric tests to ensure the robustness and reliability of the results. We have addressed different econometric issues, such as autocorrelation, heteroskedasticity, and cross-sectional dependence, using the Driscoll-Kraay (DK) standard error estimation and endogeneity issues by the system generalized method of moments (S-GMM). The results of the study revealed that income inequality and governance quality have a positive impact on environmental degradation, while the interaction of governance quality with income inequality has a negative effect on it. In addition, economic growth, population growth, urbanization, and natural resource dependency are found to deteriorate the quality of the environment. The findings of the study offer insightful policies to reduce environmental degradation in Asian countries.
Technology development in the agricultural sector is important in the development of Thailand’s economy. The purpose of this research was to study the approach of guidelines for future agricultural technology development to increase productivity in the Agricultural sector in order to develop a structural equation model. The research applied mixed-methodology. Qualitative research by in depth interview from 9 experts and focus group with 11 successful businesspersons for approve this model. The quantitative data gather from firm, in the 500 of agricultural sector by using questionnaire, using statistical tests of descriptive analysis, inferential analysis, and multivariate analysis. The research found guidelines for future agricultural technology development to increase productivity in the Agricultural sector composed of 4 latent. The most important item of each latent were as following: 1) Agrobiology Technology (= 4.41), in important item as choose seeds that for disease resistance and tolerate the environment to suit the cultivation area, 2) Environmental Assessment (= 4.37),, in important item as survey of cultivated areas according to topography with geographic information system, 3) Agricultural Innovation (= 4.30), in important item as technology reduces operational procedures, reduce the workforce and can reduce operating costs, and 4) Modern Management Systems (= 4.13), in important item as grouping and manage as a cooperative to mega farms. In addition, the hypothesis test found that the difference in manufacturing firm sizes. Medium and Small size and large size revealed overall aspects that were significantly different at the level of 0.05. The analysis of the developed structural equation model found that there was in accordance and fit with the empirical data and passed the evaluation criteria. Its Chi-square probability level, relative Chi-square, the goodness of fit index, and root mean square error of approximation were 0.062, 1.165, 0.961, and 0.018, respectively.
The rapid development of cities and urbanization in China has forced the growth of new channels for buying agricultural products. The purpose of this research is to examine how Internet of Things (IoT’s) technologies can digitize a traditional fresh food supply chain. Comparative and descriptive analysis methods are used to highlight the major pain points in the traditional supply chains and assess how digital transformation could help. We delve into every part of digital transformation, which includes establishing an information platform based on IoT and developing smart storage options. Our findings revealed that through end-to-end digital integration, supply chain efficiency is improved with shorter lead times and leaner inventories that yield reduced costs as well as fewer losses while ensuring product quality and traceability. In sum, such an approach would enhance sustainability within the fresh food value chain. As such, our article highlights key aspects of transitioning towards a digital environment in this sector for those planning similar ventures.
The MENA region, known for its significant oil and gas production, has been widely acknowledged for its reliance on fossil fuels. The dependence on fossil fuels has led to significant environmental pollution. Therefore, the shift towards a more environmentally friendly and enduring future is crucial. Thus, the current study tries to investigate the effect of green technology innovations on green growth in MENA region. Specifically, we examine whether the effect of green technology innovations on green growth depend on the threshold level of income. To this end, a panel threshold model is estimated for a sample of 10 MENA countries over the period 1998–2022. Our main findings show that only countries with income level beyond the threshold can benefit significantly from green technology innovations in term of green growth. Nevertheless, our findings indicate a substantial and adverse impact of green technology innovation on countries where income levels fall below the specified threshold.
Copyright © by EnPress Publisher. All rights reserved.