Public-Private Partnerships (PPPs) are mostly presented as a means to introduce efficient procurement methods and better value for money to taxpayers. However, the complexity of the PPP mechanism, their lack of transparency, accounting rules and implicit liabilities make it often impossible to perceive the amount of public expenditure involved and the long-run impact on taxpayers, providing room for fiscal illusion, i.e., the illusion that PPPs are much less expensive than traditional public investments. This psaper, thanks to a systematic review of the literature on the EU countries experience, tries to unveil the sources of this illusion by looking at the reasons behind the PPPs’ choice, their real costs, and the sources of fiscal risks. The literature suggests that PPPs are more costly than public funding, especially when contingent liabilities are not taken into account, and are employed as mechanisms to circumvent budgetary restrictions and to spend off-balance. The paper concludes that the public sector should share more risks with private sectors by reducing the amount of guarantees, and should prevent governments from operating through a sleight of hand that deflects attention away from off-balance financing, by applying a neutral fiscal recording system.
The present article reports the applications of Caputo-Fabrizio time-fractional derivatives. This article generalizes the idea of unsteady MHD free convective flow in a Walters.-B fluid with heat and mass transfer study over an exponential isothermal vertical plate embedded in a porous medium. The governing equations are converted into dimensionless form and extended to fractional model. The generalized Walters-B fluid model has been solved analytically using the Laplace transform technique. From the general solutions we reduce limiting solutions when to the similar motion for Newtonian fluid. The corresponding expressions for and Nusselt and Sherwood numbers are also assessed. Numerical results for velocity, temperature and concentration are demonstrated graphically for various factors of interest and discussed. As a result, we have plotted the influence of fractional parameter on fluid flow and drawn comparison between fractional Walters’-B and fractional Newtonian fluid and found that fractional Newtonian fluid is faster than fractional Walters’-B fluids.
Energy shortages and environmental damage have become serious problems facing the society today. Biomass can be a renewable energy source, which large-scale development and utilization are of great significance to industry and social life. Biomass pyrolysis technology can achieve effective utilization of biomass energy. It is necessary to optimize the pyrolysis reaction technology and device for realize the industrialization and large-scale production of biomass energy.
Six Sigma is an organized and systematic method for strategic process improvement that relies on statistical and scientific methods to reduce the defect rates and achieve significant quality up-gradation. Six Sigma is also a business philosophy to improve customer satisfaction, a tool for eliminating process variation and errors and a metric of world class companies allowing for process comparisons. Six Sigma is one of the most effective advanced improvement strategies which has direct impact on operational excellence of an organization. Six Sigma may also be defined as the powerful business strategies, which have helped to improve quality initiatives in many industries around the world. With the use of Six Sigma in casting industries, rejection rate is reduced, customer satisfaction is improved and financial benefits also increased. Six Sigma management uses statistical process control to relentlessly and rigorously pursue the reduction of variation in all critical processes to achieve continuous and breakthrough improvements that impact the bottom-line and/or top-line of the organization and increase customer satisfaction. In this paper author reviewed some of the significant previous published papers and focused on the general overview of publication in casting industries.
The Nevado de Toluca Flora and Fauna Protection Area presents a constant fragmentation of its forests. The objective of the research was to identify the processes of forest deterioration and the role of local stakeholders in its conservation. Geographic information systems were used as a basis for the generation of thematic maps, in addition to the application of a flow diagram that defines the problems of the forest and another that describes and analyzes them for the search of solutions. The results show that the main factors affecting deterioration are forest fires, immoderate logging, pests and diseases. Finally, strategies and scenarios for forest management are proposed based on the articulation of local stakeholders.
The cross wire projection welding of wires (Al 5182, = 4 mm) performed using the conventional (i.e. pneumatic) electrode force system was subjected to thorough numerical analysis. Calculations were performed until one of adopted boundary conditions, i.e., maximum welding time, maximum penetration of wires, the occurrence of expulsion or the exceeding of the temperature limit in the contact between the electrode and the welded material was obtained. It was observed that the ring weld was formed within the entire range of welding parameters. The process of welding was subjected to optimisation through the application of a new electromechanical electrode force system and the use of a special hybrid algorithm of electrode force and/or displacement control. Comparative numerical calculations were performed (using SORPAS software) for both electrode force systems. Technological welding tests were performed using inverter welding machines (1 kHz) provided with various electrode force systems. The research also involved the performance of metallographic and strength (peeling) tests as well as measurements of welding process characteristic parameters (welding current and voltage).
The welding process optimisation involving the use of the electromechanical force system and the application of the hybrid algorithm of force control resulted in i) more favourable space distribution of welding power, ii) energy concentration in the central zone of the weld, iii) favourable (desired) melting of the material within the entire weld transcrystallisation zone and iv) obtainment of a full weld nugget.
Copyright © by EnPress Publisher. All rights reserved.