This study investigates the influence of government expenditure on the economic growth of the ASEAN-5 countries from 2000 to 2021. The study employs the Pooled Mean Group (PMG) ARDL model and robust least squares method. The importance of the current study lies in its analysis of the short and long-run impact of government expenditure on economic growth in ASEAN-5. The empirical findings demonstrate a positive relationship between government expenditure and economic growth in the long run. These results align with the Keynesian perspective, asserting that government expenditure stimulates economic growth. The study also confirms one-way causality from government expenditure to economic growth, supporting the Keynesian hypothesis. These insights hold significance for policymakers in the ASEAN-5, highlighting the necessity for policies promoting the effective allocation of productive government expenditure. Moreover, it is important to enhance systems that promote economic growth and efficiently allocated economic resources toward productive expenditures while also maintaining effective governance over such expenditures.
In the contemporary landscape characterized by technological advancements and a progressive economic environment, the utilization of currency has undergone a paradigm shift. Despite the growing prevalence of digital currency, its adoption among the Vietnamese population faces several challenges, including limited financial literacy, concerns over security, and resistance to change from traditional cash-based transactions. This research aims to identify these challenges and propose solutions to encourage the widespread use of digital currency in Vietnam. This research adopts a quantitative approach, utilizing Likert scale questionnaires, with a dataset of 330 records. The interrelationships among variables are analyzed using partial least squares structural equation modeling (PLS-SEM). The analysis results substantiate the viability of the research model, confirming the hypotheses. The findings demonstrate a positive relationship and the significance impact of factors such as perceived usefulness (PU), perceived ease of use (PEOU), perceived trust (PT), social influence (SI), openness to innovation (OI), and financial knowledge (FK) to intention to use digital currency (IUDC). Thereby aiming to inform policymakers, industry stakeholders, and the wider community, fostering a deeper understanding of consumer behavior and providing solutions to enhance the adoption of digital currency in the evolving landscape of digital finance.
Resisting the adoption of medical artificial intelligence (AI), it is suggested that this opposition can be overcome by combining AI awareness, AI risks, and responsibility displacement. Through effective integration of public AI dangers and displacement of responsibility, some of these major concerns can be alleviated. The United Kingdom’s National Health Service has adopted the use of chatbots to provide medical advice, whereas heart disease diagnoses can be made by IBM’s Watson. This has the ability to improve healthcare by increasing accuracy, efficiency, and patient outcomes. The resistance may be due to concerns about losing jobs, anxieties about misdiagnosis or medical mistakes, and the consciousness of AI systems drifting more responsibility away from medical professionals. There is hesitancy among healthcare professionals and the general public about the deployment of AI, despite the fact that healthcare is being revolutionised by AI, its uses are pervasive. Participants’ awareness of AI in healthcare, AI risk, resistance to AI, responsibility displacement and ethical considerations were gathered through questionnaires. Descriptive statistics, chi-square tests and correlation analyses were used to establish the relationship between resistance and medical AI. The study’s objective seeks to collect data on primary and public AI awareness, perceptions of risk and feelings of displacement that the professionals have regarding medical AI. Some of these concerns can be resolved when AI awareness is effectively integrated and patients, healthcare providers, as well as the general public are well informed about AI’s potential advantages. Trust is built when, AI related issues such as bias, transparency, and data privacy are critically addressed. Another objective is to develop a seamless integration of risk management, communication and awareness of AI. Lastly to assess how this comprehensive approach has affected hospital settings’ ambitions to use medical AI. Fusing AI awareness, risk management, and effective communication can be used as a comprehensive strategy to address and promote the application of medical AI in hospital settings. An argument made by Chen et al. is that providing training in AI can improve adoption intentions while lowering complexity through the awareness of AI.
This investigation extends into the intricate fabric of customer-based corporate reputation within the banking industry, applying advanced analytics to decipher the nuances of customer perceptions. By integrating structural equation modeling, particularly through SmartPLS4, we thoroughly examine the interrelations of perceived quality, competence, likeability, and trust, and how they culminate in customer satisfaction and loyalty. Our comprehensive dataset is drawn from a varied demographic of banking consumers, ensuring a holistic view of the sector’s reputation dynamics. The research reveals the profound influence of these constructs on customer decision-making, with likeability emerging as a critical driver of satisfaction and allegiance to the bank. We also rigorously test our model’s internal consistency and convergent validity, establishing its reliability and robustness. While the direct involvement of Business Intelligence (BI) tools in the research design may not be overtly articulated, the analytical techniques and data-driven approach at the core of our methodology are synonymous with BI’s capabilities. The insights garnered from our analysis have direct implications for data-driven decision-making in banking. They inform strategies that could include enhancing service personalization, refining reputation management, and improving customer retention efforts. We acknowledge the need to more explicitly detail the role of BI within the research process. BI’s latent presence is inherent in the analytical processes employed to interpret complex data and generate actionable insights, which are crucial for crafting targeted marketing strategies. In summary, our research not only contributes to academic discourse on marketing and customer perception but also implicitly demonstrates the value that BI methodologies bring to understanding and influencing consumer behavior in the banking sector. It is this blend of analytics and marketing intelligence that equips banks with the strategic leverage necessary to thrive in today’s competitive financial landscape.
The primary objective of this paper is to explore the impact of household policies in both Saudi Arabia and Nigeria towards achieving efficient and sustainable economic growth in the 21st century. Fundamentally, the objective of the study was sparked by the basic factors of comparison the importance of culture in international relations, challenges related to terrorism which impede adequate implementations of economic policies, trade facilitation and logistics to enhance economic growth and cross-border movement of goods and services. Systematic literature review (SLR) and content analysis (CA) were used as methodological approaches of the paper. The articles explored for review were accessed using visualization of similarities (VOS) by exploring different database such as: journals, core collection of Web of Science (WOS), peer review sources and library sources. The findings demonstrated that Saudi Arabia and Nigeria have different policies regarding households in achieving sustainable economic growth. On one hand, in Saudi Arabia, the focus is on the economic burden associated with chronic non-communicable diseases (NCDs) and the out-of-pocket spending among individuals diagnosed with these diseases. In addition, the study found that households with older and more educated members, an employed head of household, higher socioeconomic status, health insurance coverage, and urban residency had significantly higher out-of-pocket expenditure in achieving sustainable economic development. On the other hand, Nigeria’s policy is centered around trade liberalization and its impact on household welfare as an integral part of sustainable economic development. The policies implemented in Saudi Arabia and Nigeria have implications for the well-being of their citizens. In Saudi Arabia, the household policies have significantly impacted the quality of life (QoL) of households, particularly those with low income, large size, male-led, urban, and with elderly heads. In Nigeria, trade liberalization policies have mixed welfare implications for households in the aspects of real income, they also induce unemployment in key sectors, such as agriculture and industry. To mitigate negative effects, it is suggested that Saudi Arabia should effectively address chronic non-communicable diseases (NCDs) among the households while Nigeria should efficiently pursue trade liberalization on a sectorial basis, focusing on sectors that do not severely undermine household welfare.
We analyze Thailand’s projected 2023–2030 energy needs for power generation using a constructed linear programming model and scenario analysis in an attempt to find a formulation for sustainable electricity management. The objective function is modeled to minimize management costs; model constraints include the electricity production capacity of each energy source, imports of electricity and energy sources, storage choices, and customer demand. Future electricity demands are projected based on the trend most closely related to historical data. CO2 emissions from electricity generation are also investigated. Results show that to keep up with future electricity demands and ensure the country’s energy security, energy from all sources, excluding the use of storage systems, will be necessary under all scenario constraints.
Copyright © by EnPress Publisher. All rights reserved.